☆ THE ART OF COMPUTER PROGRAMMING ☆ EARLIEST ERRATA TO VOLUME 3 (2nd edition)

This document is a transcript of the notes that I had been making in my personal copy of *The Art of Computer Programming*, Volume 3 (second edition) from the time it was first printed in 1998 until the 27th printing came out in 2011.

Four levels of updates — "errors," "amendments," "plans," and "improvements" — appear, indicated by four different typographic conventions:

▶ Page 666 line 1 _

____ 04 Jul 1776

Technical or typographical errors (aka bugs) are the most critical items, so they are flagged with a ' \blacktriangleright ' preceding the page number. The date on which I first was told about the bug is shown; this is the effective date on which I paid the finder's fee. The necessary corrections are indicated in a straightforward way. If, for example, the book says 'n' where it should have said 'n + 1', the change is shown thus:

 $n \rightsquigarrow n+1$

Page 666 line 2 _____

_____ 14 Jul 1789

Amendments to the text appear in the same format as bugs, but without the ' \blacktriangleright '. These are things I wish I had known about or thought of when I wrote the original text, so I added them later. The date is the date I drafted the new text.

Page 666 line 3 20 Nov 1917

Plans for the future represent a third kind of item. In such notes I sketched my intentions about things that I wasn't ready to flesh out further when I wrote them down. You can identify these items because they're written in slanted type, and preceded by a bunch of dots '.....' leading to the date on which I recorded the plan in my files.

Page 666 line 4.

_ 10 Jan 1938

The fourth and final category — indicated by page and line number in smaller, slanted type — consists of minor corrections or improvements that most readers don't want to know about, because they are so trivial. You wouldn't even be seeing these items if you hadn't specifically chosen to print the complete errata list in all its gory details. Are you sure you wanted to do that?

My shelves at home are bursting with preprints and reprints of significant research results that I want to digest and summarize, where appropriate, in the ultimate edition of Volume 3. I didn't do that in the second edition because I would surely have to do it over again later: New results continue to pour forth at a great rate, and I will have time to rewrite that volume only once. Volumes 4 and 5 need to be finished first. So I've put most of my effort so far into writing up those parts of the total picture that seem to have converged to their near-final form. It follows, somewhat paradoxically, that the updates in this document are most current in the areas where there has been least activity.

2 INTRODUCTION

On the other hand I do believe that the changes listed here bring Volume 3 completely up to date in two respects: (1) All of the research problems in the previous edition—i.e., all exercises that were rated 46 and above—have received new ratings of 45 or less whenever I learned of a solution; and in such cases, the answer now refers to that solution. (2) All of the historical information about pioneering developments has been amended whenever new details have come to my attention.

The ultimate, glorious, future editions of Volumes 1–3 are works in progress. Please let me know of any improvements that you think I ought to make. Send your comments either by snail mail to D. E. Knuth, Computer Science, Gates Building 1B, Stanford University, Stanford CA 94305-9015, or by email to taocp@cs.stanford.edu. (Use email for book suggestions only, please—all other correspondence is returned unread to the sender, or discarded, because I have no time to read ordinary email.) Although I'm working full time on Volume 4 these days, I will try to reply to all such messages within a year of receipt. Current news about The Art of Computer Programming is posted on

http://www-cs-faculty.stanford.edu/~knuth/taocp.html

and updated regularly.

-Don Knuth, February 1998

Writing a series like The Art of Computer Programming is similar to painting the Forth Rail Bridge. No sooner is it finished than the job must be started again. — MALCOLM CLARK (1992)

The time when The Guardian ceases to make mistakes altogether is not, at the moment, foreseeable. — IAN MAYES (1998)

the sorting and searching the tracks

 $\begin{array}{c} \mbox{Copyright} \textcircled{C} \ 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, \\ 2006, 2007, 2008, 2009, 2010, \mbox{Addison-Wesley; all rights reserved} \\ \mbox{Last updated 16 August 2022} \end{array}$

All of these corrections have been made in subseque	nt printings.
Page iv line 3 of the Library of Congress Data	07 Jan 2011
xiv,780p. ∕→ xiv,782p.	
Page vii lines 23 and 24	28 Oct 2008
cheerfully pay \$2.56 \searrow cheerfully award \$2.56	
Page ix line 11	09 Oct 2010
This is sometimes unfortunate $\bigwedge \rightarrow$ A motley mixture is, however, often u	n fortunate
Page x line -6	09 Oct 2010
This is not \bigwedge This distinction is not	
Page xi line 9	09 Oct 2010
Later editions $\bigwedge \to$ Later printings	
Page xiii replacement for the bottom line	07 Jan 2011
Appendix C — Index to Algorithms and Theorems	757
Index and Glossary	759
▶ Page 1 line 7	_05 May 1998
The Prince (1951) \bigwedge The Prince (1513)	
Page 5 line 3 of exercise 3	_ 16 Nov 1998
conditions (1) and (2) \searrow conditions (1) and (2)	
▶ Page 6 line 1 of exercise 9	_ 24 Aug 2002
After $n \swarrow $ After N	
▶ Page 7 line 2	03 Jan 2000
at most ten \bigwedge less than a dozen	
Page 7 line -24	14 Sep 1998
Achtzehnhundert zwölf \searrow Achtzehnhundertzwölf	
Page 7 line -7	_ 11 Nov 1998
süssen Mädeln. ∕v→ langen Tag.	
Page 8 line 31	16 Feb 2003
upper case letter \longrightarrow uppercase letter	
Page 12 near the top	19 Dec 2001
line 9: Marshall Hall's \longrightarrow the simple line 11: [See <i>Proc.</i> 203.] We \longrightarrow We	

Page 14 line 7	09 0	Oct	2001
K. F. Hindenburg $\bigwedge C$. F. Hindenburg			
▶ Page 15 line 2 after (7)	28 (Oct	2000
Rodriguez \longrightarrow Rodrigues			
▶ Page 17 line 3	$12 \mathrm{M}$	ſay	1998
$((a_1 a_2 \dots a_n), (p_1, p_2, \dots, p_n)) \land \rightarrow ((a_1, a_2, \dots, a_n), (p_1, p_2, \dots, p_n))$)		
▶ Page 17 line 6	12 N	ſay	1998
$\operatorname{ind}(a_1, a_2, \dots, a_n) \rightsquigarrow \operatorname{ind}(a_1 a_2 \dots a_n)$			
Page 18 line 1	23 N	ſay	1998
$54613872; \longrightarrow 54613872$ (man 1 is 5th out, etc.);			
▶ Page 20 line 2 of exercise 19	09 A	۱ug	1999
$((n-1)m \mod m) ((n-1)m \mod n)$			
Page 22 line 1 of exercise 28	. 23 N	Jov	2002
(R. W. Floyd, 1983.)			
Page 23 lines -20 and -15	15 A	Aug	2003
Anuyogadvāra-sutra ∕\→ Anuyogadvārasūtra			
Page 23 near the bottom	_ 20	Jul	2000
line −12: <i>Lílávatí</i> of Bháscara Áchárya ⁄\→ Līlāvatī of Bhāskara lines −11 and −8: Bháscara ⁄\→ Bhāskara			
Page 23 from line -4 and continuing into page 24	15 (Oct	2004

The correct rule ... A few years later, $\wedge \rightarrow$

The correct rule for counting permutations when elements are repeated was apparently unknown in Europe until Marin Mersenne stated it without proof as Proposition 10 in his elaborate treatise on melodic principles [Harmonie Universelle 2, also entitled Traitez de la Voix et des Chants (1636), 129–130]. Mersenne was interested in the number of tunes that could be made from a given collection of notes; he observed, for example, that a theme by Boesset,

+++-+	1-1-1	

can be rearranged in exactly 15!/(4!3!3!2!) = 756,756,000 ways.

The general rule (3) also appeared in Jean Prestet's Élémens des Mathématiques (Paris: 1675), 351–352, one of the very first expositions of combinatorial mathematics to be written in the Western world. Prestet stated the rule correctly for a general multiset, but illustrated it only in the simple case $\{a, a, b, b, c, c\}$. A few years later,

Page 27 line -10	22 Aug 2002
Paris 258 (1964) ∧→ 258 (Paris, 19	64)

Page 31 line 2 of exercise 10	15 Jun 2003
insure $\bigwedge \to$ ensure	
▶ Page 31 line -5	_ 20 Jul 2001
notion of \bigwedge notion of "topological sorting"	
▶ Page 32 line 3 of exercise 15	13 Aug 2002
$x_1 < x_2 < \cdots < x_n$ and $n_1 + n_2 + \cdots + n_m = m $ $\longrightarrow x_1 < x_2 < \cdots $ $n_1 + n_2 + \cdots + n_m = n$	$\cdot < x_m$ and
Page 33 line 8 of exercise 19	_01 Jan 2006
$\pi = x_{j_1} x_{j_2} \dots x_{j_n}$, where $1 \leq j_k \leq m \longrightarrow \pi = x_{i_1} x_{i_2} \dots x_{i_n}$, where $1 \leq i_k$	$\leq m$
▶ Page 35 line 2	01 Jan 2006
the largest $x_j \swarrow$ the largest j	
Page 35 line 7	_01 Jan 2006
(a) is simply juxtaposition; \longrightarrow (b) sorts $\{w_1, \ldots, w_k, x_1, \ldots, x_l\}$, but it so poses $y_1 \ldots y_k$ with $z_1 \ldots z_l$;	imply juxta-
Page 35 replacement for the displayed equation on line 10	_01 Jan 2006
$\pi = (x_{11} \dots x_{1n_1} y_1) \mathrel{\textcircled{R}} ((x_{21} \dots x_{2n_2} y_2) \mathrel{\textcircled{R}} (\dots \mathrel{\textcircled{R}} (x_{t1} \dots x_{tn_t} y_t))$	··))
Page 35 line 11	_01 Jan 2006
by letting (11) stand for \bigwedge by letting the two-line array (11) correspond	lto
▶Page 39 line 5	13 Jun 2006
Magazine 33 ∕,→ Magazine 32	
▶ Page 40 lines 10 and 11 from the bottom	18 May 2000
$+\sum_{j=0}^{k} \checkmark + \sum_{j=0}^{k-1} \qquad \text{(twice)}$	
▶ Page 41 replacement for the bottom line	19 May 2000
$R_m(z) = L(z) + \frac{2z}{z} + \frac{z}{z} + \frac{z}{z}$	+ <u></u>
$z - z_0 z - z_1 z - z_1 z - z_2 z - z_2 z - z_2$	$m z-z_m$
► Page 42 replacement for line 5	19 May 2000
$\frac{2z}{1-z} + \frac{z/z_1}{1-z/z_1} + \frac{z/z_1}{1-z/\overline{z}_1} + \dots + \frac{z/z_m}{1-z/z_m} + \frac{z/z_m}{1-z/\overline{z}_m} + I$	$R_m(z),$
▶ Page 42 line 3 after (31)	19 May 2000
$R_m(z) \to -z \longrightarrow R_m(z) \to cz$ for some constant c	
Page 42 line 4 after (31)	26 May 2000
when $n > 1$. \bigwedge when $n > 1$. (See also exercise 28.)	
▶ Page 43 in Figure 3	_01 Jan 2006
[the x axis, namely the horizontal line $y = 0$, should be thicker]	

Page 45 replacement for line 3	18 May 2000
$\sum_k \left\langle {n \atop k} ight angle \left({k \atop n-q} ight) = \left\{ {n \atop q} ight\} q!, \qquad ext{integer } q \geq 0.$	
Page 46 line 3	29 Jan 2005
alternatively \longrightarrow alternately	
Page 46 exercise 16	14 Aug 2002
[change the notation from $\binom{n}{k}$ to $\chi_k^n \chi$, because I'm now using the forme partition numbers in Volume 4]	er notation for
Page 46 exercise 19	26 Nov 2003
J. Riordan $\bigwedge \rightarrow$ I. Kaplansky and J. Riordan, 1946	
▶ Page 47 line 1 of exercise 27	01 Jan 2006
is a forest \bigwedge is an oriented forest	
Page 47 new exercise	26 May 2000
28. [HM35] Find the asymptotic value of the numbers z_m in Fig. 3 as prove that	$m \to \infty$, and
$\sum_{m=1}^{\infty} (z_m^{-1} + \bar{z}_m^{-1}) = e - \frac{5}{2}.$	
Page 47 another new exercise	29 Jan 2005
▶29. [M30] The permutation $a_1 ldots a_n$ has a "peak" at a_j if $1 < j < n$ an a_{j+1} . Let s_{nk} be the number of permutations with exactly k peaks, and number with k peaks and k descents. Prove that (a) $s_{nk} = \frac{1}{2} \chi_{2k}^n \chi + \chi_{2k}^n$	$ d a_{j-1} < a_j > l let t_{nk} be the {n \atop j+1} + \frac{1}{2} \chi_{2k+2}^n \chi_{2k+2} $
(see exercise 10), (b) $s_{nk} = 2$ ι_{nk} , (c) $\sum_k \langle_k / x \rangle = \sum_k \iota_{nk} x $ (1 + 2)	
Page 52 line 10	12 May 1998
pool \mathcal{N} prool	
Page 54 line 4	01 Jan 2006
can be rearranged. Interchanging $\gamma \rightarrow$ array (16); its columns are essentially include can be rearranged.	dependent and
Page 54 line -10	06 Jan 2011
Corollary. ∕ _\ → Corollary B.	
▶ Page 59 line -6	01 Jan 2006
in much $\bigwedge \rightarrow$ in a much	
▶ Page 60 line 4 after the caption	25 Nov 1998
$(n_2+m-1) \checkmark \rightarrow (n_2+m-2)$	
Page 61 line -6	01 Jan 2006
$a_j > a_k > a_i \text{ for } i < j < k \land \rightarrow a_i > a_k > a_j \text{ for } i < j < k$	
▶ Page 63 line 1 of (46)	17 May 1999
$\frac{1}{2}\ln n \longrightarrow \frac{1}{2}n\ln n$	

▶ Page 63 line 2 of (49)	.09 Aug 1999
$\frac{x^6}{n^2} \rightsquigarrow \frac{8}{9} \frac{x^6}{n^2}$	
Page 64 line 2 above (52)	01 Jan 2006
$O\left(\exp(-2n^{\epsilon})\right)$ in each term $\searrow O\left(\exp(-2n^{2\epsilon})\right)$ in each term	
Page 64 line -6	. 22 Aug 2002
Paris (1782) \searrow (Paris, 1782)	
Page 67 replacement for line -4	_01 Jan 2006
$17!/(12\cdot 11\cdot 8\cdot 7\cdot 5\cdot 4\cdot 1\cdot 9\cdot 6\cdot 5\cdot 3\cdot 2\cdot 5\cdot 4\cdot 2\cdot 1\cdot 1)$	
[and similarly, insert parentheses into the denominator in exercise 20]	
Page 68 exercise 23	. 20 Aug 2007
$A_n \longrightarrow E_n$ (twice)	
Page 69 exercise 32	_09 Feb 2005
t_n is $\bigwedge \to$ the involution number t_n is	
Page 70 line 6	_03 Jan 2003
out degree \bigwedge out-degree	
▶ Page 70 line 12	01 Jan 2006
$ columns sets \land \searrow column sets $	
Page 74 hyphenation on lines -8 and -7	_09 Oct 2007
rear-ranged \bigwedge re-arranged	
▶ Page 76 line -15	_ 21 Jul 1998
of other $\bigwedge \to$ of the other	
▶ Page 77 top line	_ 07 Jun 1998
Table 2 ∕√→ Table 1	
Page 77 line -4	_03 Jun 1998
$K_1, \ldots, K_N K_1 \ldots K_N$	
▶ Page 82 replacement for line 11	01 May 1998
$B = (\min 0, \text{ ave } (N^2 - N)/4, \max (N^2 - N)/2, \text{ dev } \sqrt{N(N-1)(N)})$	(7+2.5)/6);
▶ Page 84 line 4 after the table	23 May 1998
that w sort \searrow that we sort	~
Page 88 line -10	_06 Jan 2011
Corollary. ∧→ Corollary H.	
▶Page 90 line 11	09 Aug 1998
$h_t, \dots, h_1 \land \rightarrow h_{t-1}, \dots, h_0$	mug 1000
$h_t, \ldots, h_1 \rightsquigarrow h_{t-1}, \ldots, h_0$	U

▶ Page 92 in (9)	_ 22 May 2000
$\binom{r-1}{2} \leq s \leq \binom{r}{2} \land \checkmark \binom{r-1}{2} \leq s < \binom{r}{2}$	
▶ Page 92 line 1 of Theorem I	_ 09 Dec 1998
$O(Ne^{c\sqrt{\ln n}}) \checkmark O(Ne^{c\sqrt{\ln N}})$	
Page 94 new entry before line -3 of Table 6	_ 11 Apr 2001
$190 \hspace{.1in} 84 \hspace{.1in} 37 \hspace{.1in} 16 \hspace{.1in} 7 \hspace{.1in} 3 \hspace{.1in} 1 \hspace{.1in} 359$	7201 7
Page 94 near the bottom	_ 11 Apr 2001
line $-5: 10NT \searrow 10(NT - S)$	
bottom three lines: Therefore first pass. \searrow (The first pass is however, if h_{t-1} is near N, because $NT - S = (N - h_{t-1}) + \cdots$	very quick, $+(N-h_0).)$
Page 95 lines 6–9	_ 11 Apr 2001
He also discovered order $N^{3/4}$. \searrow On the other hand, subs by Marcin Ciura show that Sedgewick's sequence (11) apparently m $O(N(\log N)^2)$ or better. The standard deviation for sequence (11) small for $N \leq 10^6$, but it mysteriously begins to "explode" when N	equent tests takes $B_{\rm ave} =$ is amazingly passes 10^7 .
Page 95 near the bottom	_ 11 Apr 2001
in (12): $3h_t \ge N \longrightarrow h_{t+1} > N$ lines -6 to -4 : recommended, again 10% faster. \longrightarrow recommended ter results, possibly even of order $N \log N$, have been reported be using the quantity $\lfloor 2.25h_s \rfloor$ in place of $3h_s$ in (12); see Information ing 92 1 (1992), 449–457.	ed. Still bet- y N. Tokuda <i>ion Process-</i>
Page 98 line -1	_ 26 Dec 2000
discussed below in $\bigwedge \rightarrow$ discussed in	
▶ Page 100 line −14	_ 30 Apr 2008
LD3 INPUT,1(1:1) \bigwedge LD4 INPUT,1(1:1)	
▶ Page 102 line 2 of exercise 7	_ 12 May 1999
$ a_2 - 1 \swarrow a_2 - 2 $	
▶ Page 103 line 2 of exercise 17	24 Jan 2005
$\{1,2,\ldots,n\} \checkmark \not \downarrow \{1,2,\ldots,N\}$	
▶ Page 105 line 4	_ 22 May 2000
the running time \longrightarrow the average running time	
Page 105 line 2 of exercise 40	_01 Nov 2002
(15) \longrightarrow (15)	
▶ Page 105 line 4 of exercise 42 $N/g \longrightarrow N^{3/2}/g$	_ 22 May 2000

Page 110 caption to Figure 16 is not an error	22 Aug 2002
cocktail-shaker short [shic] $\bigwedge \rightarrow$ cocktail-shaker short [shic] [Let's drink a toast to all alcoholic shorting methods, and forgive authors wh make weird attempts at humor.]	o occasionally
Page 111 step M3 of Algorithm M	19 May 2005
$(\wedge, \wedge, \wedge, \wedge, (\text{six changes}))$	
▶ Page 116 line 2 of step Q7	01 May 1998
$r+1.$ If $\searrow r+1.$) If	
Page 118 line 53 of the program	27 Jul 1998
$j - N \longrightarrow j - N.$	
Page 119 lines 21 and 22	_ 24 Apr 2007
of the keys $K_1, \ldots, K_s \longrightarrow$ of the first s keys $\{K_1, \ldots, K_s\}$	
Page 121 replacement for line 2 of (25) $B_N = \frac{1}{2} (N \pm 1) (2H_{N+1} - 2H_{N+2} \pm 1 - 6/(M \pm 2)) \pm \frac{1}{2}$	_ 15 Aug 1998
$D_N = \frac{12}{6} (N + 1)(2M_{N+1} - 2M_{M+2} + 1 - 6)(M + 2)) + \frac{1}{2},$ ►Page 122 line 7	22 May 2000
Exercise 58 $\wedge \rightarrow$ Exercise 42	22 May 2000
▶ Page 125 line 1 of step R2	_ 15 Aug 1998
$R_l \leq \cdots \leq R_r \land \!$	
▶ Page 125 line -3	15 Aug 1999
$[\mathbf{r}\mathbf{I4} = l - j] \checkmark \mathbf{i} \mathbf{I4} = j - l]$	
▶ Page 126 lines 30 and 31 of the program	15 Aug 1998
$ \begin{array}{l} [rI4unknown] \swarrow & [rI4 unknown] \\ b \leftarrow b - 1 \checkmark & b \leftarrow b + 1 \end{array} \end{array} $	
▶Page 127 line -15	_ 14 Sep 2000
$\frac{1}{4}(\alpha+1)N \rightsquigarrow \frac{1}{2}N$	
▶ Page 130 line 1	_ 21 Sep 2001
$f_{-1} \curvearrowright f_{-1}(x)$	
Page 136 new sentence added to exercise 28	_ 25 Oct 1998
Ignore the comparisons made when computing the median value s .	
▶Page 137 line 2 of exercise 41	_ 28 Oct 2000
$1 \leq k < i \checkmark i \leq k < i$	
▶ Page 138 line 2 of exercise 55	05 Aug 1999
three keys (28). \bigwedge three keys (28), assuming that $M > 1$.	
▶ Page 141 line -18	. 23 May 1998
$\{170, 175\} \checkmark \not \{170, 275\}$	

▶ Page 148 line 4	14 Sep 2000
$\ln N \checkmark \!$	
▶ Page 151 line -7	01 May 1998
heaps). $\bigwedge \rightarrow$ heaps.)	
▶ Page 152 line 9	09 Jan 2000
$CACM \ 12 \searrow CACM \ 21$	
Page 152 line 14	29 Jul 2000
249 \bigwedge 249; M. L. Fredman, $J\!AC\!M$ 46 (1999), 473–501	
Page 152 lines 24–25	20 Mar 2000
SODA 8 (1997), 83–92] $\searrow $ SICOMP 28 (1999), 1326–1346]	
▶ Page 155 line 2	14 Sep 2000
$04805 - \checkmark 04806 -$	
Page 163 line -20	01 Jan 2002
regardless \bigwedge or in the trivial case $N = 1$, regardless	
▶ Page 166 line 4 after the program	04 Dec 2005
about $9N \lg N \checkmark about (8N \lg N)u$	
▶ Page 166 line −12	29 Jul 1998
111.] \\ → 111].	
▶ Page 166 line -8	13 Aug 1998
arrangement $\Lambda \rightarrow$ arrangements	
▶ Page 166 line -3	31 Jul 1998
$K'_1 < \cdots K'_N \land \rightarrow K'_1 < \cdots < K'_N$	
Page 166 line -1	11 May 1999
key appears \bigwedge keys appear	
Page 168 line 1 of exercise 18	16 Feb 2000
on N records $\bigwedge \to$ of N records	
Page 174 line 07 of the program	05 Oct 1999
$\rightarrow \text{TOP}[i] \rightarrow \text{TOP}[i].$	
▶ Page 177 line 1	20 Nov 1999
sort II $$ sort It	
Page 177 line -1	10 Aug 1998
signea-magnituae · ∨ signea magnituae	aa t
Prage 183 line 23	09 Aug 1998
$ \operatorname{III} n \to \bigvee \operatorname{Ig} n $	

Page 183 line 3 before (5)	10 Apr 2009
begin as if we were sorting four elements by merging, first $\bigwedge \rightarrow$	begin by first
Page 184 line 2 after (6)	05 Feb 2009
two more \bigwedge one or two more	
▶ Page 188 row b and column e of (24)	16 Jun 1998
$9 \checkmark 7$	
▶ Page 189 in Eq. (26)	28 Oct 2000
$\frac{n'!}{2^{k'}T(G')} \frac{n''!}{2^{k''}T(G')} \bigwedge \frac{n'!}{2^{k'}T(G')} \frac{n''!}{2^{k''}T(G'')}$	
Page 192 lines 3-5	02 Jan 2007
The intermediate takes no fewer comparisions $\bigwedge \rightarrow$ Marcin F gorithmica 40 (2004), 133–145; Information Proc. Letters 101 extended Wells's method and proved that $S(13) = 34$, $S(14) = S(22) = 71$; thus merge insertion is optimum in those cases as it seems likely that $S(16)$ will some day be shown to be less th F(16) involves no fewer steps	Peczarski [see AI- (2007), 126–128] 38, S(15) = 42, well. Intuitively, han $F(16)$, since
Page 193 lines 2 and 3 after the figure	14 Apr 2006
(This result 1956.) \searrow [This result was first obtained by A internal IBM memorandum (1956).]	A. Gleason in an
Page 194 line 1	22 Sep 2007
When $\bigwedge \to (Weak \ orderings.)$ When	
Page 197 exercise 35	20 Aug 2002
S(13) S(14)	
Page 203 in steps H1–H5	06 Jan 2011
[Summarize each step, as in the usual format for algorithms.]	
▶ Page 204 line 2	05 Oct 1999
$M(m, n-2^{\iota}) H(m, n-2^{\iota})$	
▶ Page 212 bottom line	04 Jan 1999
acieves $\Lambda \rightarrow$ achieves	
▶ Page 213 line −4	23 Dec 2002
exercise 26 \longrightarrow exercise 27	
▶ Page 224 line 4 before (3)	21 Sep 2001
$\langle y_1, \ldots, y_m \rangle \land \land \langle y_1, \ldots, y_n \rangle$	
▶ Page 225 line −13	02 Jun 1998
needed in an \bigwedge needed in a	

Page 232 line -22	_ 24 Jan 2003
$(1, n)$ merging $\bigwedge (1, n)$ -merging	
Page 235 notation change, four lines before exercise 1	.08 Aug 2005
$x \leq y \longrightarrow x \subseteq y$ (twice)	
Page 238 replacement for exercise 20	_ 12 Sep 2003
20. [28] Prove that (a) $\hat{V}_3(5) = 7$; (b) $\hat{U}_4(n) \le 3n - 10$ for $n \ge 6$.	
Page 238 notation change in line 2 of exercise 22	.08 Aug 2005
$x \leq y$ implies that $x \alpha \leq y \alpha x \subseteq y$ implies that $x \alpha \subseteq y \alpha$	
▶ Page 240 line -5	. 27 Aug 1998
$r \le 4n^2 + \sqrt{n} \lg n \checkmark r \le 4n^2 + O(n^{3/2} \log n)$	
Page 241 line 1 of exercise 43	_ 23 Dec 2002
(m, n) merging $\searrow (m, n)$ -merging	
▶ Page 241 two lines above Fig. 59	30 Aug 2004
replace comparisons by <i>m</i> -way merges. \bigwedge replace each comparison network with $\hat{M}(m,m)$ modules.	by a merge
Page 242 lines -3, -13, -17	. 17 Aug 1998
Fig. 61 \\ → Fig. 60 Fig. 61 \\ → Fig. 60	
▶ Page 246 line 2 of exercise 66	05 Oct 1999
exercise 63 \bigwedge exercise 64	
Page 246 lines -1, -3	. 17 Aug 1998
Fig. 60 \→ Fig. 61 Fig. 60 \→ Fig. 61	
▶ Page 247 line 4	_ 29 Oct 1999
$1 \leq i \leq N \land \rightarrow 1 < i \leq N$	
▶ Page 250 line 22	. 21 Nov 2003
15,000000 \ 1 5000000	
▶ Page 257 in Fig. 66	_04 Feb 2009
$[\text{delete the label } \tau = \text{leaf}]$	
Page 257 line -16	_04 Feb 2009
record pointed to by LOSER; $\checkmark\!$	
Page 257 bottom two lines	_04 Feb 2009
$Q \leftarrow \text{LOC}(X[0]), \text{ and } RQ \leftarrow 0. \land \rightarrow \text{ and } Q \leftarrow \text{LOC}(X[0]).$	

Page 258 replacement for steps R2-R6 ______ 04 Feb 2009

- **R2.** [End of run?] If RN(Q) = RC, go on to step R3. (Otherwise RN(Q) = RC + 1 and we have just completed run number RC; any special actions required by a merging pattern for subsequent passes of the sort would be done at this point.) If RC = RMAX, stop; otherwise set $RC \leftarrow RC + 1$.
- **R3.** [Output top of tree.] (Now Q points to the "champion," and RN(Q) = RC.) If $RC \neq 0$, output RECORD(Q) and set LASTKEY \leftarrow KEY(Q).
- **R4.** [Input new record.] If the input file is exhausted, set $RN(Q) \leftarrow RMAX + 1$ and go on to step R5. Otherwise set RECORD(Q) to the next record from the input file. If KEY(Q) < LASTKEY (so that this new record does not belong to the current run), set RMAX $\leftarrow RN(Q) \leftarrow RC + 1$.
- **R5.** [Prepare to update.] (Now Q points to a new record.) Set $T \leftarrow PE(Q)$. (Variable T is a pointer that will move up the tree.)
- **R6.** [Set new loser.] Set $L \leftarrow LOSER(T)$. If RN(L) < RN(Q) or if RN(L) = RN(Q) and KEY(L) < KEY(Q), then set $LOSER(T) \leftarrow Q$ and $Q \leftarrow L$. (Variable Q keeps track of the current winner.)

▶ Page 262 line -13	10 Jan 2003
685–687 _→ 685–688	
Page 263 the rating of exercise 11 [M25] $\searrow M20$]	04 Feb 2009
Page 263 line 2 of exercise 12	04 Feb 2009
how often does step R6 set LOSER $\leftarrow Q$?	
Page 264 line 2 of exercise 23	11 May 1999
the same order that $\gamma \rightarrow$ the same order as	
the '2,2,2' on T3 in Phase 3 should be right-justified	14 Feb 2005
Page 270 lines 5 and 6	21 Sep 2004
the usual Fibonacci sequence; by V. Schlegel \bigwedge the usual quence, and when $p = 3$ it has been called the Tribonacci sequences were apparently first studied for $p > 2$ by Nārāyaṇa Pa [see P. Singh, <i>Historia Mathematica</i> 12 (1985), 229–244], then max by	Fibonacci se- uence. Such ņdita in 1356 ny years later
▶ Page 271 line 1 of step D1	06 May 1998
$D[j] - 1$ and $TAPE[k] \leftarrow j \searrow D[j] \leftarrow 1$ and $TAPE[j] \leftarrow j$	
Page 275 equation number in wrong font	14 Nov 1999

______ 14 Nov 1999 ▶ Page 282 line -10 _ $v_1 + u_0 + v_0 \nleftrightarrow v_1$ Page 283 replacement for lines -17 thru -13 _____ 24 May 2008 $13^{0}19^{1}$ 7^0 31^1 13^1 ____ $1 \times 31 = 31$ 19 \mathbf{R} 19^131^0 7^0 $13^{0}19^{1}$ $31^{1}52^{0}$ 1 13^1 R $0 \times 52 = 0$) 52^0 $19^{1}31^{0}$ 19^1 13^1 ____ \mathbf{R} $0 \times 52 = 0 > \max(36, 31, 23)$ $31^{1}52^{0}$ $19^{1}31^{0}$ 19^1 13^1 $52^{0}82^{0}$ $0 \times 82 = 0$ 0 R (19^{0}) (31^{0}) 82^{1} $(31^{\circ}52^{\circ})$ $1 \times 82 = 82$ (\mathbf{R}) 0 ____ Page 286 line 3 of exercise 14 _ _____ 14 Nov 1999 $T_{(n(k)+1),k} \longrightarrow T_{(n(k)+1)k}$ ▶ Page 287 the running headline ______ 21 Jul 2002 CASCADE \longrightarrow POLYPHASE _____ 19 Jun 2003 Page 288 line 3 _____ National Conf. $\wedge \rightarrow$ Nat. Meeting Page 289 lines 8–17 _____ 18 Aug 2009 [this table can be compressed horizontally, so that it doesn't extend into the margin] ▶ Page 291 replacement for line 18 ____ _____ 30 Apr 2008 $D_1 \le c + d$, $D_2 \le c$, $D_3 = 0$; $D_1 \ge D_2 \ge D_3$. _____ 08 Feb 2001 ▶ Page 294 line 7 of (4) _____ ______ 08 Apr 2003 Page 296 line -6 _____ Eqs. (8) \longrightarrow The equations in (8) ▶ Page 299 line -18 _____ _____ 16 Jan 2000 Programmer $\wedge \rightarrow$ Programmers Page 316 lines 1 and 2 _____ ______04 Dec 2005 unless successfully contested, such a patent makes it illegal to use $\wedge \rightarrow$ between 1968 and 1988, no one in the U.S.A. could legally use ▶ Page 316 the T3 entry for Phase 5 ______ 30 Apr 2008 $A_1 \xrightarrow{} A_1.$ ______ 14 Feb 2005 ▶ Page 316 line 2 of exercise 2 ____ 11 dummy runs \longrightarrow 10 dummy runs ▶ Page 328 line 23 _____ _____ 30 Apr 2008 same as in example 6. $\wedge \rightarrow$ same as in example 5. ▶ Page 329 line -15 ___ _____ 30 Apr 2008 A_1A_4 ∽ A_1A_4 A_1A_4 A_1 A_1 A_1 A_1A_4

▶ Page 332 line 17 _____

_____ 28 Oct 2000

 $nC(1+\rho)\omega_o\tau \longrightarrow NC(1+\rho)\omega_o\tau$

▶ Page 338 corrections to Chart A, the foldout illustration ______ 30 Apr 2008

[Note that this illustration consists of ten long "rows," numbered '1.' to '10.', where each row is divided into six compartments representing the activity of magnetic tapes T1, T2, T3, T4, T5, and T6, as the "time" advances from 0 to 19 minutes (indicated by vertical lines). The following corrections are described in order of increasing time, rather than in order of increasing row number.]

In row 9, between times 8.70 and 8.75: tape T4 should be textured for "reading in backward direction," as it is just before 8.70 and just after 8.75; this is the brief interval when T3 is solid black ("writing in forward direction") and T1, T2, T5 are blank.

In row 5, between times 9.5 and 10.4: tape T5 is currently marked "reading in forward direction," but it should be blank; this tape is dotted ("rewinding in backward direction") just before time 9.5; only tapes T1, T3, T4, T6 should be reading forward at this point.

In row 5, between times 10.4 and 11.2: tape T6 is currently blank; it should be dotted, to signify "rewinding in backward direction," because it is rewinding together with T2 (although T2 finishes earlier because it doesn't have to rewind as far).

▶ Page 341 line 4	30 Apr 2008
$p_0 \qquad p_0 \qquad p_0$	
$\frac{1}{1-p_1z-p_0z} \xrightarrow{q} \frac{1}{1-p_{\geq 1}z-p_0z}$	
Page 345 lines -20, -19, and -18	17 Sep 2004
reflection shows why into S runs. \bigwedge reflection shows why the actions of a merge sort and imagine that time could run the action	his is so, if we consider backwards: The final
output is "unmerged" into subfles, which are unmerged into oth the output has been unmerged into S runs.	hers, etc.; at time zero
Page 348 line 3 of exercise 1	10 Aug 1998
mixed radix system $\bigwedge\!$	
▶ Page 348 line -13	18 May 1998
preform \searrow perform	
▶ Page 349 line -15	30 Apr 2008
$\sqrt{24975\gamma} + \gamma^2 - \gamma \checkmark \not \sqrt{24975\gamma + \gamma^2} - \gamma$	
Page 350 in the specification of SORT10	10 Jan 2003
Tape 0 \longrightarrow tape 0	
Page 353 line -16	25 Nov 2008
floor $i + 1 \rightsquigarrow \text{floor } i \pm 1$	
▶ Page 356 line 1 of exercise 6	10 Jan 2003
Fig. 87 _ → Fig. 88	

Page 360 line -6	17 Sep 2004
operations would take $\bigwedge\!$	
▶ Page 367 line 8	30 Apr 2008

minimum value in (4) $\wedge \rightarrow$ minimum value in (5)

Page 369 replacement for the final three paragraphs _____ _____ 17 Jul 2003

SyncSort begins by reading the first block of each run and putting these PBrecords into the memory pool. Each record in the memory pool is linked to its successor in the run it belongs to, except that the final record in each block has no successor as yet. The smallest of the keys in those final records determines the run that will need to replenished first, so we begin to read the second block of that run into the first buffer. Merging begins as soon as that second block has been read; by looking at its final key we can accurately forecast the next relevant block, and we can continue in the same way to prefetch exactly the right blocks to input, just before they are needed.

The three SyncSort buffers are arranged in a circle. As merging proceeds, the computer is processing data in the current buffer, while input is being read into the next buffer and output is being written from the third. The merging algorithm exchanges each record in the current buffer with the next record of output, namely the record in the memory pool that has the smallest key. The selection tree and the successor links are also updated appropriately as we make each exchange. Once the end of the current buffer is reached, we are ready to rotate the buffer circle: The reading buffer becomes current, the writing buffer is used for reading, and we begin to write from the former current buffer.

Many extensions of this basic idea are possible, depending on hardware capabilities. For example, we might use two disks, one for reading and one for writing, so that input and output and merging can all take place simultaneously. Or we might be able to overlap seek time by extending the circle to four or more buffers, as in Fig. 26 of Section 1.4.4, and deviating from the forecast input order.

Page 370 line 11	04 Dec 2005
D reads or writes $\longrightarrow D$ reads or D writes	
Page 370 line 16	05 Feb 2009
D times faster. \searrow up to D times faster.	
▶ Page 371 line -20	03 May 2004
$b_1 \swarrow h_1$	
▶ Page 377 line 6 of exercise 7	28 Oct 2000
$\begin{array}{l} 6w_1 + 6w_2 + 7w_3 + 9w_4 + 9w_5 + 7w_3 + 4w_7 + 4w_8 \swarrow 6w_1 + 6w_2 + 7w_3 \\ 7w_6 + 4w_7 + 4w_8 \end{array}$	$+9w_4+9w_5+$
Page 383 lines -12 and -11	20 Sep 2005

at the beginning of each decade $\Lambda \rightarrow$ every ten years

Page 385 line 16	18 Feb 2002
1930 ⁄ → 1929–1930	
▶ Page 385 line 24	22 Aug 2007
(1938) \ (1936)	
▶ Page 385 line 27	22 Aug 2007
James W. Bryce, U.S. Patent 2189024 (1940) \searrow Ralph E. Page 2359670 (1944)	e, U.S. Patent
Page 385 line -16	04 Dec 2000
stored program computer $\bigwedge\!$	
Page 386 near the bottom	25 Jan 2003
line -9 : Holberton $\bigwedge Snyder$ line -1 : Mrs. Holberton $\bigwedge Snyder$	
Page 387 line 22	25 Jan 2003
F. E. Holberton \swarrow Frances E. [Snyder] Holberton	
Page 389 line -15	03 Jul 1999
SODA 8 (1997), 370–379 \searrow J. Algorithms 31 (1999), 66–104.	
Page 390 last line of exercise 3	05 Feb 2009
merging in $\bigwedge\!$	runs — in
▶ Page 400 equation (12)	23 Jun 1998
$c_1 = 1/N^\theta \swarrow c = 1/N^\theta$	
▶ Page 400 equation (12)	20 Nov 2002
$= 0.1386 \checkmark \approx 0.1386$	
▶ Page 403 line 17	02 Jun 1998
a interesting \bigwedge an interesting	
Page 406 line 14	14 Nov 1999
$P_{N-1,m-1} \checkmark \!$	
Page 407 line 1 of exercise 17	23 May 2005
W. E. Smith $\bigwedge J$. R. Jackson	
Page 410 line -16	10 Jan 2003
$R_1 R_2 \ldots R_N R_1, R_2, \ldots, R_N$	
Page 412 equation number in wrong font	<u> </u>
$(1) \checkmark (1)$	
Page 414 line -9	14 Nov 1999
number of \bigwedge number of	

▶ Page 416 lines 5 and 6 after the program	14 Nov 1999
C1 is weighted more heavily than C2 $\longrightarrow C1$ is weighted more heav	ily than $C2$
Page 418 line 7	_ 10 Jan 2003
$R_1 R_2 \ldots R_N \longrightarrow R_1, R_2, \ldots, R_N$	
▶Page 424 line 7 of exercise 20	_ 28 Aug 2004
Fibonacci search \bigwedge Fibonaccian search	
Page 434 line -13	.03 May 2004
$S \leftarrow LLINK(R) \longrightarrow S \leftarrow LLINK(R)$	
▶ Page 435 line 3	_ 19 Jan 2000
about $n^2 \longrightarrow about N^2$	
▶Page 440 bottom line	_ 28 Jun 2004
$4.55 \checkmark 4.72$	
Page 443 equation numbers in wrong font	_ 12 Dec 1999
$\begin{array}{ccc} (20) & \swarrow & (20) \\ (21) & \checkmark & (21) \end{array}$	
▶ Page 445 line -10	. 24 May 2008
$C < H + 2 - P \land \!$	
▶Page 446 line -8	. 13 May 1998
in a several \bigwedge in several	
Page 446 the line after (27)	. 24 May 2008
in this case \longrightarrow in this case, because we cannot have $C = H + 2 - P$ u	nless $P = 1$
Page 447 near the top	_03 Dec 1998
line 4: cost $c \checkmark w$ weight w	
line 6: $-c \rightarrow -w$ line 7: it has been \wedge an entimum tree has been	
line 7. It has been $\sqrt{4}$ an optimum tree has been lines 8 and 9: a sequence of such transformations will make $l_k \leq l_{k+1}$ found an optimum tree in which $l_k = l_{k+1}$	\bigwedge we have
▶ Page 447 at the end of the proof of Lemma X	_03 Dec 1998
line -4 of the proof: $j+1 \sqrt{j-1}$ (twice)	
line -3 of the proof: $i+1 i-1$	
line -2 of the proof: $k+1 k-1$	
▶ Page 447 replacement for lines 22–28	<u> </u>
Suppose $l_s < l_k - 1 \le l_{s+1}$ for some s with $j \le s < k - 1$. I	Let t be the
smallest index $< k$ such that $l_t = l_k$. Then $l_i = l_k - 1$ for $s < k$	i < t, and

smallest index $\langle k \rangle$ such that $l_t = l_k$. Then $l_i = l_k - 1$ for $s \langle i \langle t, \rangle$ and $\underline{s+1}$ is a left child; possibly s + 1 = t. Furthermore [t] and [t+1] are siblings. Replace their parent by [t+1]; replace [i] by [i+1] for $s \langle i \langle t; \rangle$ and replace the external node [s] by an internal node whose children are [s] and [s+1]. This change increases the cost by $\leq q_s - q_t - q_{t+1} \leq q_s - q_{k-1} - q_k$, so it is an improvement if $q_s \langle q_{k-1} + q_k$. Therefore, by (iii), $l_j \geq l_k - 1$.

▶ Page 447 line -9	25 Jul 2004
(b) \bigwedge (a) or (b)	
▶ Page 447 replacement for line −5	25 Jul 2004
$C(q'_0, \ldots, q'_{n-1}) \leq C(q_0, \ldots, q_n) - (q_{k-1} + q_k).$	(29)
▶ Page 447 replacement for line -1	25 Jul 2004
$0 \dots j-1 k-1 k j \dots k-2 k+1 \dots$. <u>n</u> . (30)
▶ Page 449 near the top	03 Dec 1998
line 4: $[k-2] [s-1]$ line 6: $j < i < k - 1 j < i < s$.	
▶ Page 450 in Fig. 19	15 Sep 2004
[On the path from the root to external node G, the level numb nodes should be $(0, 1, 2, 3, 4, 5)$, not $(0, 1, 2, 2, 3, 4)$.]	ers on internal
▶ Page 451 replacement for steps G1, G2, and G3	18 Sep 2004
G1. [Begin phase 1.] Set $WT(X_k) \leftarrow w_k$ and $LLINK(X_k) \leftarrow RLIN$ $0 \le k \le n$. Also set $P_0 \leftarrow X_{2n+1}$, $WT(P_0) \leftarrow \infty$, $P_1 \leftarrow X_0$, Then perform step G2 for $r = 1, 2,, n$, and go to G3. G2. [Absorb w_r .] (At this point we have the basic condition	$\begin{split} K(X_k) &\leftarrow \Lambda \text{ for} \\ t &\leftarrow 1, \ m \leftarrow n. \end{split}$
$WT(P_{i+1}) > WT(P_{i+1}) \text{for } 1 \le i \le t;$	(21)
 in other words, the weights in the working array are "2-dw WT (P_{t-1}) ≤ w_r, set k ← t, perform Subroutine C below, and Otherwise set t ← t + 1 and P_t ← X_r. G3. [Finish phase 1.] While t > 1, set k ← t and perform Subroutine C 	escending.") If repeat step G2. utine C below.
▶ Page 452 replacement for Subroutine C	13 May 2009
Subroutine C (<i>Combination</i>). This recursive subroutine is the Garsia–Wachs algorithm. It combines two weights, shifts them least, and maintains the 2-descending condition (31). Variables j as but variables k , m , and t are global.	he heart of the efft as appropri- and w are local,
C1. [Create a new node.] (At this point we have $k \ge 2$.) Set LLINK(X_m) $\leftarrow P_{k-1}$, RLINK(X_m) $\leftarrow P_k$, WT(X_m) $\leftarrow w \leftarrow$ WT(1)	$t m \leftarrow m + 1,$ P_{k-1}) + WT (P_k).
C2. [Shift the following nodes left.] Set $t \leftarrow t-1$, then $P_j \leftarrow P_{j+1}$	$_1$ for $k \le j \le t$.
C3. [Shift the preceding nodes right.] Set $j \leftarrow k-2$; then while $P_{j+1} \leftarrow P_j$ and $j \leftarrow j-1$.	WT(P $_j$) $< w$ set
C4. [Insert the new node.] Set $P_{j+1} \leftarrow X_m$.	

- **C5.** [Done?] If j = 0 or $WT(P_{j-1}) > w$, exit the subroutine.
- **C6.** [Restore (31).] Set $k \leftarrow j, j \leftarrow t-j$, and call Subroutine C recursively. Then reset $j \leftarrow t-j$ (note that t may have changed!) and return to step C5.

CHANGES TO VOLUME 3: SORTING AND SEAI	RCHING 21
▶ Page 453 line 22	11 May 1999
It it is smaller, \bigwedge If it is smaller,	
Page 454 line 7 before the exercises	05 Oct 2005
See also the paper \bigwedge Further properties have been found by M. Further, and W. Rytter, <i>Theoretical Comp. Sci.</i> 180 (1997), 309 the paper	Karpinski, L. L. 9–324. See also
▶ Page 455 line 2 of exercise 11 empirical data $\land \rightarrow$	11 May 1999
Page 457 line 1 of exercise 28 a "optimum binary search" ∕√→ an "optimum binary search"	11 May 1999
▶ Page 459 line 3	28 Jul 1999
Doklady Akademiiâ Nauk ∕∖→ Doklady Akademii Nauk	
Page 459 line 4	18 Oct 2008
Soviet Math. 3 \searrow Soviet Math. Doklady 3 (1962)	
▶Page 460 line 2 of Theorem A	08 Dec 1998
Page 465 line 12	16 Feb 2003
K. $\searrow K$.	
Page 465 line -2	28 Nov 1999
$-a, 0 \text{ or } 0 \checkmark -a, 0, \text{ or } 0$	
Page 466 line 17	28 Nov 1999
$-a, 0 \text{ or } 0 \checkmark -a, 0, \text{ or } 0$	

▶ Page 469 lines −3 and −2	. 02 Jun 1998
$.143 + .153 + .143 + .143 = .582 \checkmark .143 + .152 + .143 + .143 = .581$	
Page 470 line -6	. 27 Dec 2000
▶ Page 471 line -20 Section 5.2.2 \checkmark Section 6.2.2	27 Dec 2000
► Page 473 line 5 Set $P = R \checkmark F \leftarrow R$. 28 Oct 2000
▶ Page 475 lines 3 and 4 after the caption both (although \searrow both, although	. 23 Oct 1998
Page 476 line 9	22 Mar 2006

▶ Page 477 line -5	28 Nov 1999
(1989) \checkmark (1990)	
Page 478 bottom line	19 Aug 1998
Lecture Notes in Comp. Sci. 1136 (1996), 91–106 $\searrow $ JACM 45 (1996), 91–106 $\searrow $	998), 288 - 323
Page 479 line 1 of exercise 7	04 Jun 2007
(N. J. A. Sloane and A. V. Aho.) $\bigwedge \rightarrow$ (A. V. Aho and N. J. A. Sloane.)	
Page 486 lines 10 and 11	12 Nov 2008
It follows that the average N keys $\bigwedge $ It follows that $(p-l)/N$ N keys,	<i>I</i> , the average
▶ Page 487 line 19	08 Dec 2000
contain m keys $\bigwedge \to$ contains m keys	
▶ Page 489 line 27	16 Feb 2003
121–138 ⁄ → 121–137	
▶ Page 492 line 12	16 Feb 2003
490–500 \\ → 490–499	
▶ Page 493 at left of the table	28 Nov 1999
between I and J: $0 \rightsquigarrow \Delta$	
between R and II: $\Phi \longrightarrow \Sigma$	
Page 496 new paragraph to follow line 23	07 Apr 2001
An interesting way to store large, growing tries in external suggested by S. Y. Berkovich in <i>Doklady Akademii Nauk SSSR</i> 298–299 [English translation in <i>Soviet Physics–Doklady</i> 17 (1972)	memory was 2 202 (1972), , 20–21].
▶ Page 500 line 9	11 Sep 1998
See $n \rightsquigarrow Set n$	
Page 505 line -5	28 Nov 1999
node.) $\bigwedge \to$ node).	
▶ Page 511 line 6 of exercise 41	31 Oct 2004
that can written \longrightarrow that can be written	
Page 512 new exercise	08 Mar 1999
▶45. [M25] If the seven keys of Fig. 33 are inserted in random order by of exercise 15, what is the probability of obtaining the tree shown?	the algorithm
▶ Page 513 line -15	25 Feb 2000
Mecmuasi ∕\→ Mecmuası	
▶ Page 514 lines 12 and 13, in column HER	21 Sep 2001
$-1 \searrow 1$	

▶ Page 514 line 10	_ 15 Oct 1999
K(3,3) \→ K(3:3)	
▶Page 515 line -14	17 Jul 1998
good good spread \bigwedge good spread	
▶ Page 517 in 13th and 14th printings only	_ 14 Nov 2003
[The following line was missing at the bottom of the page.] $h(2), \ldots$, so the following experiment suggests itself: Starting w	ith the line
Page 518 lines 6-8	_ 07 Apr 2003
was first conjectured proof.] \longrightarrow was observed long ago by bot and Auguste Bravais, Annales des Sciences Naturelles 7 (1837), 42–11 an illustration equivalent to Fig. 37 and related it to the Fibonacci se also S. Świerczkowski, Fundamenta Math. 46 (1958), 187–189.]	anists Louis 10, who gave equence. See
Page 519 lines -5 and -4	_ 27 Jun 2006
Such arrays addition. $\bigwedge $ Such arrays make multiplication unnecessar power of 2, we can avoid the division in (9) by substituting exclusive-or this gives a different, but equally good, hash function.	ry. If M is a for addition;
Page 521 line 10 after the illustration	_ 20 Apr 2009
so that insertions and unsuccessful searches go faster $\bigwedge \rightarrow$ so that unsuccessful searches—which must precede insertions—go faster	
Page 523 line 2 after (13)	_ 19 Dec 1999
$rA \equiv K$. $\bigwedge rA \equiv K$; $rI2 \equiv LINK[i]$ and/or R .	
▶ Page 525 replacement for line 14	_ 21 Sep 2001
$C_N = 1 + \frac{N-1}{2M} \approx 1 + \frac{\alpha}{2}$ (successful search).	(19)
Page 525 line 18	_02 Aug 2004
actually needed for \bigwedge that is occupied by	
Page 525 line -3	17 May 2001
open position $\mathcal{N} \rightarrow$ empty position	
Page 527 line 3 non-negative \longrightarrow nonnegative	_ 03 Jan 2003
Page 529 line 3 of (24)	19 May 2005
$\mathbf{rA} \leftarrow \mathbf{rA} \lor 1 \checkmark \mathbf{tA} \leftarrow \mathbf{rA} \mid 1$	
▶ Page 530 in (28)	_ 21 Sep 2001
$M+1-n \swarrow H+1-N$	
▶Page 532 bottom line	_14 Mar 2001
$\texttt{TABLE}[(p_0 - c_1) \bmod M] \checkmark \texttt{TABLE}[(p_1 - c_1) \bmod M]$	

▶ Page 534 line 6	17 Dec 1998
to step R2. \longrightarrow to step R1.	
Page 534 lines -4 and -3	_06 Jun 2007
exactly r probes are needed $\bigwedge \rightarrow$ any permutation of table locations near probes	eeds exactly
Page 537 line -1	_ 16 Feb 2003
Eq. 1.2.6–39 \} Eq. 1.2.6–(39)	
▶ Page 540 line 15	_ 26 Jul 2008
$C'_3 \rightsquigarrow C'_2$	
▶ Page 541 line 15	_ 21 Sep 2001
$\binom{M}{N} \rightsquigarrow \binom{M}{n}$	
▶ Page 547 line −12	31 Oct 2008
Boehme ∕ ↓→ Boehm	
Page 547 line -9	_ 13 Feb 2003
probing. $\checkmark \rightarrow$ probing. [See also Derr and Luke, JACM 3 (1956), 303	3.]
▶ Page 548 line -5	_ 07 Jul 1998
Witold Lipski ∕\→ Witold Litwin	
Page 549 line 11	23 Apr 2009
344]. \longrightarrow 344]; related ideas had been explored by G. D. Knott, F SIGFIDET Workshop on Data Description, Access and Control (1971)	Proc. ACM- 1), 187–206.
▶ Page 550 line 3	20 Nov 1999
construct polynomial $\bigwedge \to$ construct a polynomial	
▶ Page 550 line 10	- 21 Sep 2001
coefficients $p_j coefficients p_i$	
▶ Page 550 line -4 of exercise 8	. 18 Jun 1998
$\left\{(-1)^k q_k \theta\right\} \nleftrightarrow \left\{(-1)^{k+1} q_k \theta\right\}$	
▶ Page 550 line -3 of exercise 8	_ 24 Jul 1998
$\theta \} \checkmark \!$	
▶ Page 555 line 7 of exercise 55	. 06 Apr 2000
Eq. 2.3.4.4–(9) \longrightarrow Eq. 2.3.4.4–(21)	
▶ Page 557 line 6 of exercise 72	11 May 1999
than the expected \bigwedge then the expected	

Page 558 new exercise	26 Sep 2007
▶78. $[M26]$ (P. Woelfel.) If $0 \le x < 2^n$, let $h_{a,b}(x) = \lfloor (ax+b)/2^k \rfloor$ that the set $\{h_{a,b} \mid 0 < a < 2^n, a \text{ odd}, \text{ and } 0 \le b < 2^k\}$ is a universa functions from <i>n</i> -bit keys to $(n-k)$ -bit keys. (These functions are par implement on a binary computer.)	mod 2^{n-k} . Show al family of hash ticularly easy to
▶ Page 561 line -12	12 Dec 1999
for examples $\bigwedge \to$ for example	
▶ Page 565 line -7	07 Apr 2002
$(k \bmod l) + 1 \checkmark (l \bmod k) + 1$	
Page 566 line -4	09 Sep 2010
"(CLASS, MAJOR) attribute" $\checkmark\!$	
Page 571 first two lines of (11)	20 Nov 1999
[semicolons are missing after the numeric values]	
Page 571 line 15	19 May 2005
$0010001000 \lor 0000100100 \lor 0000001001 \checkmark \rightarrow 0010001000 \mid 00001001$	00 000001001
▶ Page 573 line -15	17 Nov 1999
$IEEE / \searrow IEEE$	
▶ Page 574 line -2	04 Aug 1998
1, 2, 5, 7, and 8 $\bigwedge 0$, 1, 4, 6, and 7	
Page 575 line 18	20 Mar 2000
In 1997, A. E. Brouwer found \searrow A. E. Brouwer [SICOMP 28 1971] has found	3 (1999), 1970–
Page 575 line -6	02 Jul 2001
stored three places $\bigwedge \rightarrow$ stored thrice	
▶ Page 576 near the top	26 Jul 2008
line 6: 15 that use it \searrow 16 that use it line 7: 16–15 split \searrow 16–16 split	
▶ Page 577 line 3	25 Mar 2001
triples, \bigwedge triples.	
Page 578 line 22	12 Dec 1999
Proc. ACM Proc. ACM	
▶ Page 578 line -3	07 Apr 2005
J. Algorithms $1 \rightsquigarrow J$. Algorithms 2	
▶ Page 580 line 9 of exercise 8	17 May 2001
each of the queries \bigwedge each of the queries in	

rage 564 quotation from Lewis Carroli	13 Feb 2008
[The extra quotation marks, and the lack of a hyphen in down-stair I transcribed them faithfully from page 59 of Carroll's handwritter was published in facsimile in 1888, of a privately circulated work t Adventures in Wonderland.]	s, are <i>not</i> erroneous. n manuscript, which hat predated <i>Alice's</i>
Page 584 line 6	06 Jul 1998
(1862) ∕\→ (1864)	
Page 584 line 11	08 Oct 2010
Annals of Mathematics $\bigwedge Annals$ of Mathematics (2)	
Page 584 line 13	24 Aug 2002
$p(1) \dots p(n)$ and $q(1) \dots q(n) p(1) \dots p(N)$ and $q(1) \dots q(N)$	
Page 584 line -13	06 Jul 1998
$R_{p(n)} \nleftrightarrow R_{p(1)}$	
Page 587 last line of answer 12	03 Jan 2000
$\lceil \lg n \rceil \checkmark \rightarrow \lceil \lg n \rceil + 1$	
Page 588 line 7	17 Nov 2008
cross-reference $\bigwedge \rightarrow$ cross-reference card	
Page 588 line 17	14 Sep 1998
$\texttt{ACHTZEHNHUNDERT}_{\sqcup}\texttt{8ZWOLF}_{\sqcup}\texttt{8E} \checkmark \texttt{ACHTZEHNHUNDERTZWOLF}_{\sqcup}\texttt{8EIN}$	
Page 588 line 34	11 Nov 1998
$SUSSEN_{\sqcup}8MADE \swarrow LANGEN_{\sqcup}8TAG_{\sqcup}$	
Page 589 answer 19	09 Jul 1998
line 1: $(x_i, x_j) \longrightarrow \{x_i, x_j\}$ line 7: $(x_i, x_i) \longrightarrow \{x_i, x_i\}$ lines 7 and 8: those of exercises 18 and 19 \bigwedge the method of exer	rcise 18
Page 589 lines 10 and 11 of answer 19	24 Mar 2007
Another approach $c-x$). $\bigwedge \rightarrow$ Another approach, suggested by . on a key such as $(x > c/2 \Rightarrow x, x \le c/2 \Rightarrow c-x)$.	Jiang Ling, is to sort
Page 589 lines 2 and 3 of answer 20	19 May 2005
$(\land, \checkmark, \checkmark, \checkmark, (\text{three changes}))$	
Page 589 line 2 of answer 21	05 Mar 1999
$ERS, \land \rightarrow -ERS,$	
Page 589 bottom line	28 Jan 2001
Dudeney, \bigwedge Dudeney, Strand 65 (1923), 208, 312, and his	

bring anagrams

Page 590 last line of answer 22	24 Aug 2002
142.] \ → 142].	
▶ Page 592 line 6 of answer 7	28 Oct 2000
Rodriguez ∕∕→ Rodrigues	
Page 592 lines 6 and 7 of answer 7	19 Dec 2001
240; the C inversion table appears in \searrow 240. The C inversion ta Rothe in 1800; see also	ble was used by
▶ Page 593 answer 13	02 Jun 2007
line 1: $b_{m-1}, b_{m+1} b_{n-m}, b_{n-m+2}$ line 2: $b_m b_{n-m+1}$	
Page 594 line 1	11 Dec 2002
Euler's $\bigwedge \to$ Comptes Rendus Acad. Sci. 92 (Paris, 1881), 448–450. E	uler's
Page 594 line 1 of answer 20	22 Aug 2002
See \bigwedge See J. J. Sylvester, Amer. J. Math. 5 (1882), 251–330, 6 §57–§68;	$(1883), \ 334-336,$
▶ Page 594 line 1 of answer 20	07 Jan 2000
Zolnowski \longrightarrow Zolnowsky	
▶ Page 595 line 3	18 May 2000
$(uv)^{\binom{k}{2}}(-u^{-n}v^{1-n})^k (uv)^{\binom{j}{2}}(-u^{-n}v^{1-n})^j$	
▶ Page 595 line 6 of answer 23	29 Jun 1999
$(q_n^{h_1+k_1}p_n) \longrightarrow (q_n^{h_1+k_n}p_n)$	
▶ Page 596 line 3 of answer 27	03 Jan 2000
$\sum_{n} \frac{H_n(w,z)}{(1-z)\dots(1-z^n)} \checkmark \stackrel{H_n(w,z)}{} \frac{H_n(w,z)}{(1-z)\dots(1-z^n)}$	
Page 597 replacement for last paragraph of answer 28	23 Nov 2002
The average total displacement of a random permutation is $(n^2 - 5.2.1-7)$. The generating function for total displacement does not a simple form. <i>References:</i> C. Spearman, <i>British J. Psychology</i> 2 P. Diaconis and R. L. Graham, <i>J. Royal Stat. Soc.</i> B39 (1977), 262-2	1)/3; see exercise appear to have (1906), 89–108; 268.
▶ Page 598 line 2 of answer 11	01 Jan 2006
if and only if and that \bigwedge if and only if we have $\sigma_{p(1)} T \cdots T \sigma_{p(i)} = p(i) < p(j)$ whenever $\sigma_{p(i)} = \sigma_{p(j)}$ for $i < j$. We also want to show that	$= \sigma_1 \mathbf{T} \cdots \mathbf{T} \sigma_t \text{ and} \\ \text{at},$
▶ Page 599 answer 14	01 Nov 2002
line 11: $(l \cdot a, m \cdot b, n \cdot c) \longrightarrow \{l \cdot a, m \cdot b, n \cdot c\}$ line 14: $(n_1 \cdot x_1, \dots, n_m \cdot x_m) \longrightarrow \{n_1 \cdot x_1, \dots, n_m \cdot x_m\}$	
Page 599 line 1 of answer 15	01 Jan 2006
Theorem 2.3.4.2D \longrightarrow Theorem 2.3.4.2D and Lemma 2.3.4.2E	

▶ Page 602 last line of answer 2	01 Jan 2006
$m = n - q$ and $n - q - 1 \rightarrow q = n - m$ and $q = n - m + 1$.	
▶ Page 603 line 1 of answer 11	_09 Aug 1999
$\sum_{t_1 \geq 1, \dots, t_k \geq 1} \checkmark \!$	
▶ Page 603 replacements for lines 6, 7, and 9 of answer 11	_01 Jan 2006
$E_1(n) = 1/(n+1)! - 1/n!;$ $E_2(n) = [n > 0]/(n+1)!$;
$E_k(n) = (-1)^k \sum_{m \ge 0} {m \choose k-3} \frac{[n>0]}{(n+2+m)!}, \qquad k \ge 3.$	
$E(z,x) = \sum_{n,k} E_{k+1}(n) z^n x^k = \frac{ez^2 x^2 - e^x (1-x+zx)(z+x-1) - e^{z+x} (1-x+zx)(z+x-1)}{e^x z(z+x-1)(1-x)^2}$	$(z)^2(1-x)^2$.
Page 604 answer 16	_ 14 Aug 2002
[change the notation from $ _{k}^{n} $ to $\chi_{k}^{n}\chi$, because I'm now using the former partition numbers in Volume 4]	notation for
Page 605 line 9	22 Aug 2002
$\langle \langle {n \atop k} \rangle \rangle \xrightarrow{n} \langle {n \atop k} \rangle$	
Page 605 near the top	22 Aug 2002
line 8: Paris 81 (1875) $\longrightarrow 81$ (Paris, 1875) line 9: Paris 97 (1883) $\longrightarrow 97$ (Paris, 1883) line 10: (Paris: 1884) $\longrightarrow (1884)$	
▶ Page 605 line -7 of answer 16	_01 Jan 2006
$g_n(-1) = 0 \land \!$	
Page 605 replacement for lines 4 and 5 of answer 19	_ 25 Nov 2003
[Duke Math. J. 13 (1946), 259–268. Sections 2.3 and 2.4 of Richard Stanl ative Combinatorics 1 (1986) discuss rook placement in general.]	ey's Enumer-
▶ Page 606 line -6 of answer 23	_ 01 Jan 2006
$\left(u^m+(1-u)^m+ u-x ^m\right)/m! \swarrow \left(u^m+(1-u)^m- u-x ^m\right)/m!$	
Page 606 last line of answer 25	12 Feb 2005
722]. \longrightarrow 722]; see also W. Meyer and R. von Randow, <i>Math. Annalen</i> 315–321.	193 (1971),
Page 607 new answer	26 May 2000
28. The poles of $L(z)$ are the values of $T(1/e)$, where $T(z)$ is the (mult function defined by $T(z) = ze^{T(z)}$. Thus for $m > 0$ we have the convergence of $T(z) = ze^{T(z)}$.	ivalued) tree nt series
$z_m = -\sigma_m + \sum_{n \ge 0} \frac{1}{\sigma_m^n} \sum_k (-1)^k {n \brack k} \frac{(\ln \sigma_m)^{n+1-k}}{(n+1-k)!}, \qquad \sigma_m = -1 - (2\pi)^k \frac{(\ln \sigma_m)^{n+1-k}}{(n+1-k)!},$	$(n+1)\pi i$

[Corless, Gonnet, Hare, Jeffrey, and Knuth, Advances in Computational Mathematics **5** (1996), 329–359, formula (4.18)]; in particular, we have $z_m = (2m + \frac{1}{2})\pi i + \ln(2\pi em) + (\frac{1}{4} - \frac{i}{2\pi}\ln(2\pi em))/m + O((\log m)^2/m^2).$

Let $P(z) = \sum_{m=0}^{\infty} (z/(z-z_m) + z/(z-\bar{z}_m))$. It follows that $P(x) - P(-x) = \sum_{m=0}^{\infty} 4\Re(xz_m/(x^2-z_m^2)) = \sum_{m=1}^{\infty} O((x\log m)/(x^2+m^2)) = \sum_{m=1}^{x} O((x\log x)/x^2) + \sum_{m=x+1}^{\infty} O((x\log m)/m^2) = O(\log x)$ for x > 1. But we know that L(x) + P(x) = cxfor some c; hence $2cx = L(x) - L(-x) + O(\log x)$, and by letting $x \to \infty$ in (25) we find c = -1/2. Hence $L_1 = \sum_{m=0}^{\infty} 2r_m^{-1} \cos \theta_m - 1/2$. (This result is due to Svante Janson.) Page 607 another new answer ____ ____ 29 Jan 2005 **29.** (a) If $a_1 \ldots a_n$ has 2k alternating runs and k peaks, $(n+1-a_1) \ldots (n+1-a_n)$ has k-1 peaks. (b,c) See L. W. Shapiro, W.-J. Woan, and S. Getu, SIAM J. Algebraic and Discrete Methods 4 (1983), 459-466. Page 609 lines 13 and 14 _____ _____ 18 Aug 2002 [Change the notation from a_m to the more modern e_m .] ▶ Page 610 answer 23 ____ _____ 01 Jan 2006 line 4: row $k \xrightarrow{} row k$ from the bottom line 8: $\sum_{n \ge 1} \checkmark \sum_{n \ge 0}$ _____ 20 Aug 2007 Page 610 and 611, in answer 23 _____ The coefficients A_{2n} are therefore ... tangent numbers and Euler numbers \bigwedge The coefficients E_n are called *Euler numbers*; with odd index, E_{2n-1} is the tangent number $T_{2n-1} = (-1)^{n-1} 4^n (4^n - 1) B_{2n}/(2n)$. Tables of these numbers appear in Math. Comp. 21 (1967), 663-688; the sequence begins $(E_0, E_1, E_2, \dots) = (1, 1, 1, 2, 5, \dots)$ $16, 61, 272, 1385, 7936, \ldots$). The easiest way to compute Euler numbers Page 611 last two lines of answer 23 _ _____13 Jul 2007 [A. J. Kempner ... 349] $\bigwedge \rightarrow$ [L. Seidel, Sitzungsberichte math.-phys. Classe Akademie Wissen. München 7 (1877), 157–187 Page 611 lines 3-5 of answer 28. _____ 23 Mar 2000 [M. Talagrand ... $\Theta(n^{1/6})$.] $\Lambda \rightarrow$ [J. Baik, P. Deift, and K. Johansson, J. Amer. Math. Soc. 12 (1999), 1119-1178, showed that the standard deviation is $\Theta(n^{1/6})$; moreover, the probability that the length is less than $2\sqrt{n} + tn^{1/6}$ approaches $\exp\left(-\int_t^\infty (x-t)u^2(x)\,dx\right)$, where $u''(x) = 2u^3(x) + xu(x)$ and u(x) is asymptotic to the Airy function Ai(x) as $x \to \infty$. ▶ Page 611 line 3 of answer 29 _ _____ 28 Oct 2000 $\leq \sqrt{n}/e$. $\wedge \rightarrow \leq \sqrt{n}/e$.) ▶ Page 612 replacement for line −2 of answer 33 _____ _____ 01 Jan 2006 $\dots, a+1, a, k-1, \dots, 1, 0) / \Delta(k+l, \dots, 1, 0).$ The value of $\Delta(k, \dots, 1, 0) = k! \dots 2! 1!$ ▶ Page 612 replacement for line 5 of answer 34 ______ 01 Jan 2006 the shape. If $y_{a+1} = y_a$, the cell (x_a, y_1) has a hook of length a; otherwise (x_{a+b}, y_{a+1}) ▶ Page 612 line 12 of answer 35 _ ____ 01 Jan 2006 **H4.** [Move down or left.] $\wedge \rightarrow$ **H4.** [Increase p.] Increase p_{lk} by 1.

H5. [Move down or left.]

Page 613 line 4 of answer 37	19 Aug 2002
211 ⁄\→ A211	
▶ Page 613 line 1 of answer 39	01 Jan 2006
original permutations \bigwedge original permutation	
▶ Page 614 line 5 of answer 41	01 Jan 2006
$n + (\text{length } \swarrow n - (\text{length}$	
Page 614 line -8	14 Aug 2001
Lecture Notes in Comp. Sci. 807 (1994), 307–325 \searrow Algorithmica 13	(1995), 180-210
Page 615 replacement for lines 2–4	12 Dec 2008
reversals was developed by S. Hannenhalli and P. Pevzner, $JACM \neq Improvements$ that solve the problem in $O(n^{1.5}\sqrt{\log n})$ time were sub by H. Kaplan and E. Verbin, J. Comp. Syst. Sci. 70 (2005), 321–341 Bergeron, and MF. Sagot, Discrete Applied Math. 155 (2007), 881–8	46 (1999), 1–27. psequently found ; E. Tannier, A. 888.]
Page 619 new sentence for end of answer 7	23 Nov 2002
Incidentally, the variance of the stated sum can be shown to equal $(n+1)/45$.	$[n > 1](2n^2 + 7)$
▶ Page 620 throughout answer 10	08 Mar 2001
change the local symbols $3F,\ 3H,\ 8F,\ 4H,\ 5H,\ 6H,\ 7F,\ 5B,\ 7H,\ respective 3H,\ 4H,\ 5H,\ 6F,\ 4B,\ 6H.$	ly to OF, OH, 7F,
Page 620 line 12	02 Aug 1998
$NT - S - C \land \rightarrow NT - S - C$	
▶ Page 620 line 2 of answer 15	01 Nov 2002
$g_{n-1} \rightsquigarrow g_{n-1}(z)$	
Page 623 replacement for lines 7 and 8 of answer 29	08 Dec 2003
On the other hand, Marcin Ciura's experiments [Lecture Notes in C (2001), 106–117] indicate that the minimum 7-pass B_{ave} (\approx 6879) is increments 229 96 41 19 10 4 1, while the sequence 737 176 69 27 1 smallest total sorting time (\approx 125077 u).	Comp. Sci. 2138 s obtained with 0 4 1 yields the
Page 624 line 22 of answer 31	15 Aug 1998
[center the 'T' in the frequency column]	
▶ Page 624 line 23 of answer 31	15 Aug 1998
is the $\bigwedge is$	
Page 625 line -2 of answer 33	02 Aug 1998
N-1 N-1	
Page 625 bottom line	02 Aug 1998
M M	
▶ Page 626 last line of answer 36	15 Aug 1998
slow!) $\bigwedge $ slow!	

▶ Page 626 replacement for line 13 of answer 37	22 May 2000
$\sum_{N \ge 0} g_{NM}'(1) \frac{M^N w^N}{N!} = M(M-1) e^{(M-2)w} \left(\frac{w^2}{4} e^w\right)^2 + M e^{(M-1)w} \left(\frac{w^4}{16}\right)^2$	$+ \frac{5w^3}{18} e^w.$
[Also change $g'_{MN}(1) \longrightarrow g'_{NM}(1)$ on line 11.]	
▶ Page 626 line 2 of answer 38	22 May 2000
converges to \bigwedge is asymptotic to	
▶ Page 627 answer 41	_ 28 Oct 2000
line 1: We have \longrightarrow (a) We have line 2: $\rho^{k+1}/(k+1) - \rho^k/k \longrightarrow (\rho^{k+1}/(k+1) - \rho^k/k)/\ln \rho$ line 6: $(k-1)^2 \longrightarrow (k-2)^2$ line 8: $(\log \log N)^{-3} \longrightarrow (\log \log N)^{-2}$	
▶ Page 627 line 10 of answer 42	_22 May 2000
N/gh N/gh + 1	
Page 627 bottom line	_ 11 Apr 2001
307.] \longrightarrow 307.] However, with a decent sequence of increments the inner performed often enough to make this change desirable.	er loop is not
Page 628 line 1 of answer 2	_ 16 Aug 2001
Philos. Mag. 34 \longrightarrow Philosophical Mag. (3) 34	
▶ Page 629 line 9 of answer 12	_ 22 Aug 2000
$05 \rightsquigarrow 06$	
Page 630 line 2	_ 02 Aug 1998
$p \neq 0. \forall p \neq 0.$	
▶ Page 632 last line of answer 23	_05 Jun 2000
the form (20) \longrightarrow the form (19)	
▶ Page 634 line -7 of answer 32	04 Oct 2005
$H_j + H_{n+1-k} \rightsquigarrow H_k + H_{n+1-j}$	
▶ Page 635 last line of answer 38	14 Sep 2000
$X_N = \frac{1}{2}(A_N - L_N) \land \to X_N = \frac{1}{2}A_N$	
▶ Page 636 last line of answer 41	_ 15 Aug 1999
Chapter 11 \longrightarrow Chapter 14	
Page 636 lines 7 and 8 of answer 44	_ 15 Aug 1999
[insert a bit of space between these lines]	-
▶ Page 636 line 5 of answer 48	05 Jun 2000
$-\delta_0(n) \longrightarrow -\delta_0(n) + O(n^{-100})$	
▶ Page 636 replacement for answer 49	05 Jun 2000
49. The right-hand side of Eq. (40) can be improved to the estimate e^{-x} $O((x^3+x^4)n^{-2}))$. The effect is to subtract half the sum in exercise 47, rein (50) by $2 - \frac{1}{2}(1/\ln 2 + \delta_1(n)) + O(n^{-1})$. (The "2" comes from the "2/	$(1 - \frac{1}{2}x^2/n + \frac{1}{2}x^2/n +$

▶ Page 637 lines 3 and 4	05	Jun 200
.0000001725, 00041227,, .341 \checkmark .000000172501, .000041227, .0002963, .0008501433, .0062704, .06797, .1525	5, .3	48
► Page 637 line 2 of answer 53 $(p^k q^{n-k} + q^k p^{n-k}) x_n \longrightarrow (p^k q^{n-k} + q^k p^{n-k}) x_k$	15 .	Aug 199
Page 638 last line of answer 54 Über ∧→ über	15 .	Aug 199
▶ Page 638 line -10 of answer 55 $R_{i+1} \land \rightarrow R_{l+1}$	04	Aug 199
▶ Page 638 last two lines of answer 55 does not look at fast. $\land \rightarrow$ does not look at K_{N+1} , but it still might exactly g9.	05 . ami:	Aug 1999 ne <i>K</i> ₀ in
Page 641line 3 of answer 15Step 1. \searrow P1. [Initialize.]	. 22	Apr 200
▶ Page 641 line -2	01	Jan 200
▶ Page 642 line 1 the queue element $\land \rightarrow$ a queue element	22	Apr 200
Page 642 opening lines line 1: Step 2. \longrightarrow P2. [Advance q.] line 4: Step 3. \longrightarrow P3. [Check for prime n.] line 6: Step 4. \longrightarrow P4. [Check for prime \sqrt{n} .] line 9: Step 5. \bigwedge P5. [Advance n.]	. 22	Apr 200
▶Page 642 line 9 return to (b). \scale → return to P2.	02 .	Aug 199
▶ Page 642 line 16 $O(N \log N) \land \rightarrow O(N \log N \log \log N)$	06 .	Aug 200
Page 642last line of answer 15Section 7.1 \searrow Section 7.1.3	. 18	Oct 200
Page 642 answer 16line 1: Step 1. \longrightarrow I1. [Make a new leaf j .]line 2: Step 2. \bigwedge I2. [Find parent of j .]line 3: Step 3. \bigwedge I3. [Done?]line 4: Step 4. \bigwedge I4. [Sift and move j up.]line 4: return to step 2. \bigwedge return to I2.	. 22	Apr 200
▶ Page 643 line 1 $13N \lg N + O(N) \checkmark (13N \lg N + O(N))u$	22	Apr 200

32

▶ Page 643 line 3 of answer 21	23 Dec 2002
$\sum_{0 \le q < k} 2^q \checkmark \to \sum_{0 \le q \le k} 2^q$	
▶ Page 643 line -2 of answer 23	14 Sep 2000
$\lfloor N/2 \rfloor \checkmark \downarrow \lceil N/2 \rceil - 1$	
▶ Page 643 last line of answer 25	14 Sep 2000
$(2n-3)$ \longrightarrow $(2n-1)$	
▶Page 644 line -7	23 Dec 2002
$\sum_{j=0}^{t-1} \checkmark \!$	
▶Page 644 line -2	15 Aug 1999
$h_n^{-1} \rightsquigarrow h_N^{-1}$	
▶ Page 648 line 5 of answer 15	04 Dec 2005
twelve \longrightarrow eighteen	
▶ Page 648 line 6 of answer 15	17 Jul 2003
$(p,q,r) \rightsquigarrow (p,q,s)$	
Page 648 last line of answer 15	17 Feb 2006
$8N \lg N + O(N) \checkmark (8N \lg N + O(N))u$	
Page 650 line 12 of answer 5	_ 02 Aug 1998
DEC1 1 $\bigwedge \rightarrow$ DEC1 1	
▶ Page 652 replacement for line 4 of answer 18	05 Oct 1999
$\frac{\frac{1}{2}\sum_{k=0}^{CN-1}\sum_{j}\binom{N}{j}p_{k}^{j}(1-p_{k})^{N-j}\binom{j}{2} = \frac{1}{2}\sum_{k=0}^{CN-1}\binom{N}{2}p_{k}^{2} \le \frac{N-1}{4}\sum_{k=0}^{CN-1}p_{k}.$ $p_{k} \le B/CN.$	B/C, because
▶ Page 653 line 3 of answer 3	05 Oct 1999
Eq. 1.2.9-(10).) \longrightarrow Eq. 1.2.9-(10).	
Page 653 line 13 of answer 3	_ 16 Aug 2001
Phil. Mag. 18 \bigwedge Phil. Mag. (4) 18	
Page 655 line 2 of answer 7	05 Oct 1999
$6 2 \cdot 3$	
▶Page 657 line -5	05 Oct 1999
noninteger, \bigwedge noninteger.	
Page 658 answer 35	_ 20 Aug 2002
[delete this answer, as the exercise has changed]	
▶ Page 658 answer 1	09 Jul 1998
S(n) + S(n) S(m) + S(n)	

Page 664 lines 2–4 of answer 23 _____

_____ 09 Feb 2002

D. Dor ... proved $\bigwedge \rightarrow$ D. Dor and U. Zwick have shown that the actual lower limit is strictly greater than 2, while the upper limit is less than 2.942 [SICOMP 28 (1999), 1722-1758; SIAM J. Disc. Math. 14 (2001), 312-325]. They also have proved

Page 666 new sentence for answer 7 ____ _____ 16 Jun 2002

(Notice that the modified network has delay 8.)

Page 668 new answer.

20. (a) First note that $\hat{V}_3(n) \ge \hat{V}_3(n-1) + 2$ when $n \geq 4$: By symmetry the first comparator may be assumed to be [1:n]; after this must come a network to select the third largest of $\langle x_2, x_3, \ldots, x_n \rangle$, and another comparator touching line 1. On the other hand, $\hat{V}_3(5) \leq 7$, since four comparators find the min and max of $\{x_1, x_2, x_3, x_4\}$, then we sort the other three.

(b) A subtle construction by M. W. Green, shown for n = 11, does the job. (Equality probably holds.)

Page 669 last three lines of answer 31 _

01 Nov 2005 No simple ... \bigwedge The asymptotic formula $\delta_{2m} = \exp\left(\binom{2m-1}{m}\ln 2 + \binom{2m}{m+1}/2^{m+1} + \frac{2m}{m+1}\right)$ $\frac{1}{16}(m-1)\sqrt{m/\pi} + O(m^{-1/2})$ has been established by A. D. Korshunov and A. A.

Sapozhenko, with a similar formula for δ_{2m+1} ; see Russian Math. Surveys 58 (2003), 929–1001, Theorem 1.8. Page 669 notation change in answer 32 ______ 08 Aug 2005 line 1: $\theta \leq \psi \land \to \theta \subseteq \psi$

line 3: " \leq " \searrow " \subseteq "

▶ Page 669 line 4 of answer 32	05 Oct 1999
$G_T \rightsquigarrow G_t$	
Page 669 last line of answer 32	08 Aug 2005
$z[(x_1\ldots x_t)_2] \rightsquigarrow z_{(x_1\ldots x_t)_2}$	
▶ Page 669 answer 35	05 Oct 1999
line 4: and $[n-1:n] \longrightarrow$ and $[n-1:n]$ line 5: $(k-1)D_{k-1} \longrightarrow (k-1)D_{k+1}$	
Page 670 last line of answer 37	28 Jan 2001
Amusements \bigwedge Strand 46 (1913), 352, 472; Amusements	
Page 670 line -11	22 Aug 2002
Paris (I) 295 (1982) $\land \rightarrow$ (I) 295 (Paris, 1982)	
▶ Page 671 line 3 of answer 40	27 Oct 1998
$t = 4n \checkmark t = 4n + \sqrt{n} \ln n$	

▶ Page 671 replacement for lines 4–7 of answer 40	28 Oct 1998
Experiments show that the expected time to reach any prime not necessarily the bubble sort — is very nearly $2n^2$. Curiously, Fomin have proved that if the comparators $[i_k : i_k+1]$ are chosen a way that $i_k = j$ occurs with probability $j/\binom{n}{2}$, the corresp comes to exactly $\binom{n}{2}H_{\binom{n}{2}}$.	itive sorting network — R. P. Stanley and S. V. n nonuniformly in such ponding expected time
▶ Page 671 line 1 of answer 45	03 Feb 2005
at most $2^t \longrightarrow at most 2^l$.	
▶ Page 671 lines 7 and 8 of answer 46	03 Feb 2005
either $y_{k+1} \leq \cdots \leq y_n$ or \ldots at least $\min(n-k+1, k) \geq \min(n-k+1, k)$ either $y_{k+1} \leq \cdots \leq y_n$ and $k \leq l$ or $y_1 \leq \cdots \leq y_{k-1}$ and $\min(n-l+1, l+m)$	l+1, l+m $k \ge l+m$; so at least
▶ Page 671 line 4 of answer 49	05 Oct 1999
$\{0, 0, 0, 1, 1, 1\}) \{0, 0, 0, 1, 1, 1\}$	
Page 672 line -11	11 May 1999
consists of two \bigwedge consist of two	
Page 676 lines 1 and 2 of answer 66	14 Feb 2005
no pair sequence 10 comparisons. \bigwedge every pair sequence beginning with $(1,2)(2,3)(3,4)(4,5)(1,5)$ subsequent comparison.	will avoid at least one
Page 676 replacement for answer 67	14 Feb 2005
67. Suppose $c_i = j$ for exactly t_j values of <i>i</i> . For the restricted that $\sum_j t_j/(2+j)$ is minimized when $(t_0, t_1, \ldots, t_{N-2}) = (N-1)$ has shown that the achievable vectors $(t_0, t_1, \ldots, t_{N-2})$ are al $\geq (N-1, \ldots, 2, 1)$; see Graphs and Combinatorics 1 (1985), 65-	l case we need to prove -1,,2,1). Gil Kalai lways lexicographically .79.
Page 677 answer 8	04 Feb 2009
line 3: RQ \longrightarrow RC line 4: RQ \longrightarrow RC line 5: step R3. \longrightarrow step R3. (Further optimization is possible	because of answer 10.)
Page 677 line 3 of answer 9	04 Feb 2009
$RN(T) = RQ \longrightarrow RN(L) = RN(Q)$	
Page 677 line 3 of answer 9	03 Feb 2010
KEY(LOSER(T)) versus KEY(Q) ∕→ KEY(L) versus KEY(Q)	
Page 677 replacement for answer 10	04 Feb 2009
10. Let $j \equiv \text{LOC}(X[j])$, and suppose we add the unnecessary ass Q' at the beginning of step R3. The mechanism of Algorithm R d ing conditions are true just after we've done that assignment: T	signment 'LOSER($\cdot 0$) \leftarrow ensures that the follow- he values of LOSER($\cdot 0$),); and there exists a

..., LOSER((P-1)) are a permutation of $\{0, 0, 1, ..., (P-1)\}$; and there exists a permutation of the pointers $\{LOSER(j) | RN(LOSER(j)) = 0\}$ that corresponds to an

actual tournament. In other words, when $RN(\cdot j)$ is zero, the value of $KEY(\cdot j)$ is irrelevant; we may permute such "winners" among themselves. After P iterations all $RN(\cdot j)$ will be nonzero, so the entire tree will be consistent. (The answer to the hint is "yes.")

David P. Kanter observes that we can go directly from R6 to R4 as soon as RN (Q) = 0, thereby avoiding all comparisons that involve uninitialized keys when $N \ge P$.

Page 678 answer 15	05 Feb 2009
but only exhausted. $\bigwedge \to$ whenever all records in memory belong to at the moment the input is exhausted (for example, in a one-pass sort)	o the same run
▶ Page 681 line 4 of answer 6	10 Jan 2003
$\alpha p(\alpha^{-1}q^{\prime\prime}(\alpha^{-1})/q^{\prime}(\alpha^{-1})^{3}, \checkmark \rightarrow \alpha p(\alpha^{-1})q^{\prime\prime}(\alpha^{-1})/q^{\prime}(\alpha^{-1})^{3},$	
Page 681 lines -3 and -2	29 Nov 2009
The case $p = 2$ in exercise \bigwedge This number system was implicitly incentury India (see Section 7.2.1.7). We have considered the case $p = 2$	known in 14th- in exercise
Page 685 line 1 of answer 5	10 Jan 2003
$k \text{ pass } \searrow k \text{th pass}$	
▶ Page 688 line -9	10 Jan 2003
$3c_n + 2d_n + c_n 3c_n + 2d_n + e_n$	
Page 690 line 5 of answer 23	14 Nov 1999
$u^{(1)}, \ldots, \checkmark u^{(1)}, \ldots, u^{(q-1)}.$	
Page 692 near the top	10 Jan 2003
line 1: $D[p] \longrightarrow D[p]$	
line 2: $D[p] \longrightarrow D[p]$ line 2: $D[a] \land \rightarrow D[a]$	
$P_{\text{res}} = 602 \text{ answer } 5.4.6.5$	10 Jan 2002
Fage 692 answer 5.4.0-5	10 Jan 2003
line 5: $C[j] \longrightarrow C[j]$	
▶ Page 692 answer 7	04 Jun 2008
line 1: $A_0D_0(A_1D_1)^2 \longrightarrow A_0D_0A_1D_1A_0D_0(A_1D_1)^3$	
line 1: $D_1(A_1D_1)^4 \longrightarrow D_1(A_1D_1)^2$	
line 6: $D_{13}A_4D_4A_0D_0A_{10} \longrightarrow D_{13}A_4D_4A_4D_4A_0D_0A_{10}$	
▶ Page 696 line 7 of answer 2	15 Mar 2001
$k+1 = q_{i(q+1)} k+1 = a_{i(q+1)}$	
▶ Page 697 line 3 of answer 9	16 Mar 2001
$D(\tau) = dE(\tau), E(\tau) = tn + dr \checkmark D(\mathcal{T}) = dE(\mathcal{T}), E(\mathcal{T}) = tn + dr$	
Page 703 new material after line 12 of answer 11	21 Jul 2010
In fact, this distribution had already been obtained by M. L. Tsetlin in h	nis Ph.D. thesis

at Moscow University in 1964, and published in Chapter 1 of his Russian book Studies in Automata Theory and Simulation of Biological Systems (1969).

Page 704 line 2 of answer 17	<u> </u>
Of course \bigwedge Management Science Research Report 43, UCLA (1955).	Of course
▶ Page 704 answer 18	14 Nov 1999
first line: $q_j < r_1 \longrightarrow q_j < r_j$ last line: 10).] \longrightarrow 10.]	
▶ Page 704 replacement for line 2 of answer 19	09 Aug 2009
$\sum_{i,j} p_i p_j d(i,j) = \frac{1}{2} \sum_{i,j} p_i p_j (d(i,j) + d(j,i)) [i \neq j] = \frac{1}{2} (1 - p_1^2 - \cdots$	$-p_N^2$) c.
▶ Page 708 line 3 of answer 2	12 Jan 2006
$(RTAG(P) \neq 0) \land \forall (RTAG(P) = 0)$	
▶ Page 711 line 8 of answer 32	20 Apr 2001
$\max \sum_{k=0}^n q_k \rightsquigarrow \max_{k=0}^n q_k$	
▶ Page 712 lines 5 and 10 of answer 40	03 Dec 1998
$q_{k-2}(l_{k-2}-l_{k-4}) \longrightarrow q_{k-2}(l_{k-4}-l_{k-2})$	
▶ Page 712 replacement for answer 42	18 Sep 2004
42. Let $q_j = WT(P_j)$. Steps C1-C4, which move $q_{k-1} + q_k$ into position and q_j , can spoil (31) only at the point $i = j - 1$.	between q_{j-1}
▶ Page 713 in answer 44	15 Sep 2004
line 4: LLINK $(X_j) \leftarrow t \longrightarrow$ LLINK $(X_j) \leftarrow X_t$ line 6: RLINK $(X_j) \leftarrow t \longrightarrow$ RLINK $(X_j) \leftarrow X_t$	
Page 713 lines 6-8 of answer 49	25 Apr 2010
Luc Devroye and Bruce Reed, where $\bigwedge Bruce$ Reed [JACM 50 (2 and Michael Drmota [JACM 50 (2003), 333–374], who proved that the is $\alpha \ln n - (3\alpha \ln \ln n)/(2\alpha - 2) + O(1)$ and the variance is $O(1)$, where	003), 306–332] average height
▶ Page 715 line 2 of answer 9	29 Jul 1998
$\log_{(\sqrt{10}+2)/3} n \checkmark \!$	
▶ Page 715 last line of answer 11	28 Nov 1999
$6.2.4-8. \checkmark 6.2.4-8.]$	
Page 718 line 4	23 Mar 2006
33–43.] \longrightarrow 33–43; N. Blum and K. Mehlhorn, Theoretical Comp. S 303–320.]	<i>ci.</i> 11 (1980),
▶ Page 722 line 9	28 Nov 1999
$(1991) \checkmark \!$	
Page 722 bottom line	02 Aug 1998
rA and rX. $\bigwedge \rightarrow$ rA and rX.	
Page 726 line 8 of answer 27	06 Oct 2000
not hard to prove. \longrightarrow not hard to prove. Moreover, α turns out to be i constant defined quite differently in 5.2.3–(19); see Karl Dilcher, Discrete	dentical to the ete Math. 145

(1995), 83–93.

▶ Page 726 line 2 of answer 31	_29 Jul 1998
W. Prodinger $\bigwedge H$. Prodinger	
Page 726 line 2 of answer 31	26 Oct 2008
Patricia \bigwedge Patrician	
▶ Page 727 lines 7 and 8 of answer 34	28 Nov 1999
$+\cdots \checkmark + \cdots)$ (twice)	
Page 728 new answer	08 Mar 1999
45. The probability of {THAT, THE, THIS} before {BUILT, HOUSE, IS, JACK}, JACK} before {BUILT}, {HOUSE, IS} before {JACK}, {IS} before {HOUSE}, {T {THAT, THE}, and {THE} before {THAT} is $\frac{3}{7} \cdot \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{56}$.	{HOUSE,IS, HIS} before
Page 732 line 4 of answer 29	25 Feb 1999
1274.] \bigwedge 1274; see also R. Pyke, Annals of Math. Stat. 30 (1959), 568–576	, Lemma 1.]
▶ Page 733 line 16	05 Dec 2000
Conversely, The $\swarrow \to$ Conversely, the	
Page 734 new copy replacing lines 1–5 of answer 32	.05 Jan 2002
32. Let	
$s_j = \sum_{k=0}^{j} (b_{k \mod M} - 1).$	
Then, as observed by Svante Janson, we have $c_j = \max_{k \ge j} (s_k - s_j)$, a quatively defined because $\lim_{k \to \infty} s_k = -\infty$.	ntity that is
▶Page 736 last lines of answer 40	13 Feb 2005
When $\alpha = 1 \dots$ bounded by 2.12. \longrightarrow When $\alpha = 1$ this is about 2.65, so t deviation is bounded by 1.63. [Svante Janson, in <i>Combinatorics, Prob. and</i> (2008), 799–814, has found the asymptotic moments of all orders, also when is successful.]	he standard d Comp. 17 n the search
Page 740 line 2 of answer 56	29 May 1998
to appear $\longrightarrow 37-71$	
Page 742 lines 7 and 8 of answer 68	23 Nov 1998
D. E. Knuth, P. Flajolet, to appear. \longrightarrow P. Flajolet, P. V. Poblete, an Algorithmica 22 (1998), 490–515; D. E. Knuth, Algorithmica 22 (1998), 5	nd A. Viola, 61–568.
Page 742 line 2 of answer 73	19 Dec 1999
characters. \bigwedge characters. [It was invented as early as 1970 by Alfred whose original technical report has been reprinted in <i>ICCA Journal</i> 13 (19	L. Zobrist, 90), 69–73.]
Page 743 new answer	. 26 Sep 2007
78. Let $g(x) = \lfloor x/2^k \rfloor \mod 2^{n-k}$ and $\delta(x, x') = \sum_{b=0}^{2^k - 1} [g(x+b) = g(x' - \delta(x+1, x'+1) = \delta(x, x') + [g(x+2^k) = g(x'+2^k)] - [g(x) = g(x')] = \delta(x, 0) = (2^k \div (x \mod 2^n)) + (2^k \div ((-x) \mod 2^n)) \text{ when } 0 < x < 2^n, \text{ when } \max(a-b, 0).$ Therefore $\delta(x, x') = (2^k \div ((x-x') \mod 2^n)) + (2^k \div ((x' - w) \mod 2^n)) + (2^k \bigstar ((x' - w) \mod 2^n)) + (2^k \rightthreetimes ((x' - w) \cancel 2^n)) + (2^k \rightthreetimes ((x' - w)$	(+ b)]. Then (x, x'). Also here $a \div b =$ $(x) \mod 2^n)$

Now let $A = \{a \mid 0 < a < 2^n, a \text{ odd}\}$ and $B = \{b \mid 0 \le b < 2^k\}$. We want to show that $\sum_{a \in A} \sum_{b \in B} [g(ax + b) = g(ax' + b)] \le R/M = 2^{n-1+k}/2^{n-k} = 2^{2k-1}$ when $0 \le x < x' < 2^n$. And indeed, if $x' - x = 2^p q$ with q odd, then we have

$$\sum_{a \in A} \sum_{b \in B} [g(ax+b) = g(ax'+b)] = \sum_{a \in A} \delta(ax, ax') = 2 \sum_{a \in A} (2^k \div ((2^p aq) \mod 2^n))$$
$$= 2^{p+1} \sum_{j=0}^{2^{n-p-1}-1} (2^k \div 2^p (2j+1)) = 2^{p+1} \sum_{j=0}^{2^{k-p-1}-1} (2^k - 2^p (2j+1))[p < k] = 2^{2k-1}[p < k].$$

[See Lecture Notes in Computer Science 1672 (1999), 262–272.]

Page 744 in the third paragraph of answer 1 ______ 04 May 2003 Sperner's Lemma \longrightarrow Sperner's Theorem Sperner's Lemma $\bigwedge \rightarrow$ Sperner's Theorem

▶ Page 744 just before the final display in answer 4 ______ 12 Dec 1999

And If $\bigwedge \to$ And if

Page 745 new material at end of answer 10 _____ _____ 04 Dec 2005

Kirkman wrote his paper in response to a substantially more general problem posed by W. S. B. Woolhouse, namely to find the maximum number of t-element subsets of $\{1, \ldots, n\}$ in which no q-element subset appears more than once; that problem remains unsolved. [See Lady's and Gentleman's Diary (1844), 84; (1845), 63-64; (1846), 76, 78; (1847), 62-67.]

▶ Page 747 line 6 of answer 18(e)	25 Mar 2001
$32 \times 8 = 512 \checkmark 32 \times 16 = 512$	

▶ Page 747 last line of answer 18 ______ 04 Jun 2001

also yields on $\wedge \rightarrow$ also yields an

Page 749 Table 2 06 May 1999

In the next edition I plan to give these constants to 36 hexadecimal places, instead of 45 octal places.

Page 750 line 5	16 Sep 2000
6.3–26, and 6.3–27. \searrow and 6.3–26.	
▶ Page 753 entry for Kronecker delta	_ 14 Aug 1998
$1.2.6 \checkmark 1.2.3$	
▶ Page 755 entry for $\exp x$	_ 09 Aug 1999
$1.2.2 \checkmark 1.2.9$	
▶ Page 756 entry for $\Im z$	27 Jan 2001

imaginary part $z \xrightarrow{} imaginary$ part of z

Page 757 a new appendix _______06 Jan 2011 Beginning with the 27th printing, Volume 3 now has an "Appendix C" analogous to Appendix C of Volume 4A, which lists the page numbers on which named algorithms, theorems, programs, definitions, ..., can be found. A copy of this two-page appendix can be found online in the author's website. The main index therefore begins now on page 759.

Page 758 quotation for bottom of the page _____ 07 Jan 2011

One of my mathematician friends told me he would be willing to recognize computer science as a worthwhile field of study as soon as it contains 1,000 deep theorems. This criterion should obviously be changed to include algorithms as well as theorems—say 500 deep theorems and 500 deep algorithms. But even so, it is clear that computer science today doesn't measure up to such a test, if "deep" means that a brilliant person would need many months to discover the theorem or the algorithm. The potential for "1,000 deep results" is there, but only perhaps 50 have been discovered so far.

- DONALD E. KNUTH, Computer Science and Mathematics (1973)

Page 757 and following _

_____16 Feb 1998

Miscellaneous changes to the existing index of Volume 3 are collected here, including corrections and amendments to the old entries as well as new entries that are occasioned by the new material. Thus, the lines of the full index that have changed serve also as an index to the present document. However, when a correction or amendment has caused an old index entry to be deleted, the deletion is usually not indicated.

0-1 matrices, 660. 0-1 principle, 223, 224, 245, 667, 668. $\zeta(x)$ (number of 0s), 235; see also Zeta function. $\nu(x)$ (number of 1s), 235, 643, 644, 717. π (circle ratio), as "random" example, 17, 370, 385, 547, 552, 733. Agarwal, Ramesh Chandra (रमेश चन्द्र अग्रवाल), 359, 389. Aggarwal, Alok (आलोक अग्रवाल), 698. Airy, George Biddle, function, 611. Alternating runs, 46, 607. AND (bitwise and), 111, 134, 531, 589, 592, 629. Anuyogadvārasūtra (अनुयोगद्वारसूत्र), 23. Arora, Sant Ram (सन्त राम अरोड़ा), 455. Bachrach (= Gilad-Bachrach), Ran (רן גלעד-בכרך), 403. Baik, Jinho (백진호), 611. Barve, Rakesh Dilip (राकेश दिलीप बर्वे), 371. Baudet, Gérard Maurice, 671. Bergeron, Anne, 615. Berkovich, Simon Yakovlevich (Беркович, Семён Яковлевич), 496. Betz, Bernard Keith, 268, 288. Bhāskara II, Ācārya, son of Maheśvara (भास्कराचार्य, महेश्वरपुत्र), 23. Bhattacharya, Kailash Nath (কৈলাশ নাথ ভট্টাচার্য্য), 746. Binary recurrences, 135, 167, 630, 644, 653. Bit reversal, 621. Bitner, James Richard, 403, 478, 703. Bitwise and, 111, 134, 531, 589, 592, 629. Bitwise or, 529, 571. Bleier, Robert Edward, 578. Bloom, Burton Howard, 572-573, 578, 744. Blum, Norbert Karl, 718. Boehm McGraw, Elaine Marie [= Elaine Marie Hall], 547. Boesset, Antoine de, 24. Bose, Raj Chandra (রাজ চন্দ্র বসু), 226, 578, 746. Bravais, Auguste, 518. Bravais, Louis, 518. Buckets, 541-544, 547-548, 555, 564. Carroll, Lewis (= Dodgson, Charles Lutwidge), 207-208, 216, 584.

Chakravarti, Gurugovinda (গুরুগোবিন্দ চক্রবর্ত্তী), 23. Chinese mathematics, 36. Chung, Moon Jung (정문정 = 鄭文楨), 673. Ciura, Marcin Grzegorz, 95, 623. Colin, Andrew John Theodore, 453, 454. Compositions, 286-287. Corless, Robert Malcolm, 607. Coxeter, Harold Scott MacDonald, 593. Deift, Percy Alec, 611. Derr, John Irving, 547. Descents of a permutation, 35, 46, 47, 606. Diaconis, Persi Warren, 597. Diagram of a partial order, 61–62, 183-184, 187. Digital tree search, 496-498, 517, 546-547. Dijkstra, Edsger Wybe, 636. Dilcher, Karl Heinrich, 726. Disorder, measures of, 11, 22, 72, 134, 389. Displacements, variance of, 556, 619. Drmota, Michael, 713. Eckler, Albert Ross, Jr. , 590. El-Yaniv, Ran (רן אל־יניב), 403. Empirical data, 94-95, 403, 434-435, 468 - 470.Erdélyi, Artúr (= Arthur), 131. Euler, Leonhard (Ейлеръ, Леонардъ = Эйлер, Леонард), 8-9, 19-21, 35, 38-39, 395, 593-594, 726. Eulerian numbers, table, 37. Exponential integral, 105, 137, 735. External searching, 403-408, 481-491, 496, 498-500, 541-544, 549, 555, 562-563, 572-573. External path length: Sum of the level numbers ... Feller, Willibald (= Vilim = Willy = William), 513. Fibonacci, Leonardo, of Pisa (= Leonardo filio Bonacii Pisano), 424. Free distributive lattice, 239. Gassner, Betty Jane, 40-41, 262. Gauß (= Gauss), Johann Friderich Carl (= Carl Friedrich), 395.Genetic algorithms, 226, 229. Getu, Seyoum (ስዩም ግጡ), 607.

Gilad-Bachrach, Ran (רן גלעד-בכרך), 403.

Golin, Mordecai Jay (מרדכי יעקב גולין, 高可齡), 649. Gonnet Haas, Gaston Henry, 489, 533, 565, 607, 707, 734. Gore, John Kinsey, 385. Graham, Ronald Lewis (葛立恆), 198, 202-203, 205-206, 242, 550, 597, 729, 760. Greek mathematics, 420. Green, Milton Webster, 227, 239, 667, 668, 673. Greniewski, Marek Józef, 513. Guibas, Leonidas John (Γκίμπας, Λεωνίδας Ιωάννου), 477, 525, 709, 737. Hall, Marshall, Jr., 511, 578. Hannenhalli, Sridhar Subrahmanyam (श्रीधर सुब्रह्मण्यम् हन्नेनहल्ली), 615. Hare, David Edwin George, 607. Heap, *t*-ary, 644. Hindenburg, Carl Friedrich, 14. Hindu mathematics, 23. Hwang, Frank Kwangming (黃光明), 188, 195, 202-206. IBM Corporation, 8, 169, 193, 316, 385, 489, 547. in situ permutation, 79-80, 178. Inclusion and exclusion principle, 586, 703, 744. Indian mathematics, 23, 681. Isaac, Earl Judson, 99. Jackson, James Richard, 407. Janson, Carl Svante, 607, 627, 734, 736. Japanese mathematics, 36. Jeffrey, David John, 607. Jewish mathematics, 23. Jiang Ling (江岭), 589. Johansson, Kurt Ove, 611. Kanter, David Philip, 677. Kaplansky, Irving, 46. Karpiński (= Karpinski), Marek Mieczysław, 454. Kirschenhofer, Peter, 576, 634, 644, 726. Kleitman, Daniel J (Isaiah Solomon), 452, 454, 744. Knott, Gary Don, 21, 434, 519, 529, 549, 709, 710. Knuth, Donald Ervin, ..., 600, 603, $606, 627, \ldots, 742.$ 758, 762, 782. Korshunov, Aleksey Dmitrievich (Коршунов, Алексей Дмитриевич), 669. Kwan, Lun Cheung, 657. Larmore, Lawrence Louis, 454. Lattice paths, 86-87, 102-103, 112-113, 134, 579. Li Shan-Lan (李善蘭), 36. Liang, Franklin Mark, 722, 729. Liddell Hargreaves, Alice Pleasance, 584.

Linial, Nathan (נתן ליניאל), 660. Lipski, Witold, Jr.: delete this name. Litwin, Samuel, 578. Litwin, Witold André, 548-549. Luke, Richard C., 547. Majorization, 406. Markov (= Markoff), Andrei Andreevich (Марков, Андрей Андреевич), the elder, process, 340-341. Martzloff, Jean-Claude, 36. Matsunaga, Yoshisuke (松永良弼), 36. McAndrew, Michael Harry, 502. Mersenne, Marin, 23-24. Meyer, Werner, 606. Merging, 385, 390, 480, 698. Minimum-space algorithms, for merging, 168, 390, 702. Möbius, August Ferdinand, function $\mu(\pi)$, 33. Monomial symmetric function, 609. Monotone Boolean functions, 239. Mooers, Calvin Northrup, 571. Motzkin, Theodor (= Theodore) Samuel (תיאודור שמואל מוצקין), 704. Multiple-precision constants, 155, 566, 644, 648, 650, 713, 715, 726, 748-750. Naor, Simeon (= Moni; שמעון ,מוני נאור), 708. Nārāyana Pandita, son of Nrsimha (नारायण पण्डित, नृसिंहस्य पुत्रः), 270. O'Connor, Daniel Gerard, 225. Odd-even merge, 223-226, 228, 230, 243, 244. Odlyzko, Andrew Michael, 630, 715. Okoma, Seiichi (大駒誠一), 644. OR (bitwise or), 529, 571. Oriented trees, 47, 71, 599. Page, Ralph Eugene, 385. Partitions of a set, 605, 653. Patents, vi, 225, 231, 244, 255, 312, 315-316, 369, 384-385, 394, 675, 729. Paths on a grid, 86-87, 102-103, 112-113, 134, 579. Patterns in permutations, 61. Peaks of a permutation, 47, 604. Peczarski, Marcin Piotr, 192. Perl, Yehoshua (יהושע פרל), 673, 707. Pi (π) , as "random" example, 17, 370, 385, 547, 552, 733. Polynomial hashing, 520, 550. Preferential arrangements, see Weak orderings. Prodinger, Helmut, 576, 634, 644, 648, 726. Pyke, Ronald, 732. Randow, Rabe-Rüdiger von, 606. Ray-Chaudhuri, Dwijendra Kumar (प्रिजन्प्र কমার রায়চোধরী), 578,

Recursive methods, 114, 214, 218, 243, 313, 350, 452, 592, 596, 713, 715, 717.

Régnier, Mireille, 565, 632. Roberts, Charles Sheldon, 573. Rothe, Heinrich August, 14, 48, 62, 592. Rustin, Randall Dennis, 315, 353. Rytter, Wojciech, 454. Sagot, Marie-France, 615. Samadi, Behrokh (بهرخ صمدی), 721. Samet, Hanan (חנן סמט), 566. Sapozhenko, Alexander Antonovich (Сапоженко, Александр Антонович). Schay, Géza, Jr., 538, 555, 729. Schensted, Craige Eugene (= Ea Ea), 57-58, 66. Schwartz, Jules Isaac, 128. Schwiebert, Loren James, II, 229. Seidel, Philipp Ludwig von, 611. Shapiro, Louis Welles, 607. Shrikhande, Sharadchandra Shankar (शरदचन्द्र शंकर श्रीखंडे), 746. Sefer Yetzirah (ספר יצירה), 23. Signed magnitude notation, 177. Simon, István Gusztáv, 642. Singh, Parmanand (परमानन्द सिंह), 270. Smith, Wayne Earl, 405. Snyder Holberton, Frances Elizabeth, 324, 386, 387. Spearman, Charles Edward, 597. Sperner, Emanuel, theorem, 744. Stable merging, 390. Stable sorting, 4-5, 17, 24, 25, 36-37, 79, 102, 134, 155, 167, 347, 390, $584,\ 615,\ 653.$ Stanley, Richard Peter, 69, 600, 605, 606, 670, 671. Stasevich, Grigory Vladimirovich (Стасевич, Григорий Владимирович), 91. Stevenson, David Kurl, 671.

Successful searches, 392, 396, 532, 550. Sue, Jeffrey Yen (蕭智仁), 693. Symvonis, Antonios (Συμβώνης, Αντώνιος), 702. Szekeres, György (= George), 66. Tamari, Dov (דב תמרי), born Bernhard Teitler, 718. Tannier, Eric, 615. Tenner, Bridget Eileen, 669. Tokuda, Naoyuki (徳田尚之), 95. Tree function T(z), 607, 713, 740. Tree search, 427-431, 482, 546-547. Tribonacci sequence, 270. Tsetlin, Mikhail L'vovich (Цетлин, Михаил Львович), 703. Turski, Władysław Marek, 513. Up-down permutations, 68. Verbin, Elad (אלעד ורבין), 615. Viennot, Gérard Michel François Xavier, 152. von Randow, Rabe-Rüdiger, 606. von Seidel, Philipp Ludwig, 611. Weak orderings, 194. Weisert, Conrad, 281. Wells, Mark Brimhall, 187, 192. Whitlow, Duane Leroy, 369. Williams, Francis A., Jr., 521. Williams, John William Joseph, 144-145, 149, 152, 156, 157, 389. Woan, Wen-jin (溫文杜), 607. Wölfel (= Woelfel), Peter Philipp, 558. Wong, Chak-Kuen (黃澤權), 259, 458, 476, 480, 566, 678. Woolhouse, Wesley Stoker Barker, 745. Zero-one principle, 223, 224, 245, 667, 668. Zobrist, Alfred Lindsey, 742.

43